Skip to main content
Log in

Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution

  • Feature Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The directivity of the noise generated by turbulent flows around an underwater vehicle (the fully appended SUBOFF body) is investigated numerically, where the turbulent flows are simulated by using the large eddy simulation (LES) with a non-equilibrium wall model and the noise is calculated by using the Ffowcs Williams and Hawking formulation. The wall-modeled LES reproduces the features of turbulent flows around SUBOFF, such as the attached boundary layers around the hull, separated vortices from appendages and the wrapped vortices in wakes. The coefficients and power spectral density of the wall pressures obtained are in agreement with the previous numerical results and experimental measurements. It is found that the constructive and destructive interferences of lift and side-force dipoles lead to the deviations of the directivities of instantaneous sound pressures from the lift directions. This is different from noise generated by flows around a circular cylinder, where lift dipoles dominate the radiated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crighton D. G., Dowling A. P., Williams J. E. et al. Nonlinear acoustics (Modern methods in analytical acoustics) [M]. London, UK: Springer, 1992, 648–670.

    Book  Google Scholar 

  2. Yu M. S., Wu Y. S., Pang Y. Z. Review of progress for hydrodynamic noise of ships [J]. Journal of Ship Mechanics, 2007, 11(1): 152–158(in Chinese).

    Google Scholar 

  3. Jiménez J. M., Hultmark M., Smits, A. J. The intermediate wake of a body of revolution at high Reynolds numbers [J]. Journal of Fluid Mechanics, 2010, 659: 516–539.

    Article  MATH  Google Scholar 

  4. Fureby C., Anderson B., Clarke D. et al. Experimental and numerical study of a generic conventional submarine at 10 yaw [J]. Ocean Engineering, 2016, 116: 1–20.

    Article  Google Scholar 

  5. Liu Y., Zhou Z., Zhu L. et al. Numerical investigation of flows around an axisymmetric body of revolution by using Reynolds-stress model based hybrid Reynolds-averaged Navier-Stokes/large eddy simulation [J]. Physics of Fluids, 2021, 33(8): 085115.

    Article  Google Scholar 

  6. Qu Y., Wu Q., Zhao X. et al. Numerical investigation of flow structures around the DARPA SUBOFF model [J]. Ocean Engineering, 2021, 239: 109866.

    Article  Google Scholar 

  7. Larsson L., Stern F., Visonneau M. Numerical ship hydrodynamics: An assessment of the Gothenburg 2010 workshop [M]. NewYork, USA: Springer, 2013.

    MATH  Google Scholar 

  8. Hino T., Stern F., Larsson L. et al. Numerical ship hydrodynamics: An assessment of the Tokyo 2015 Workshop [M]. Chalmers, Switzerland: Springer, 2020.

    Google Scholar 

  9. Xu Z., Qin H., Tsukrov I. Determination of hydrodynamic coefficients of the floating cage collar with forced oscillation experiments [J]. Ocean Engineering, 2018, 159: 175–186.

    Article  Google Scholar 

  10. Chase N., Carrica P. M. Submarine propeller computations and application to self-propulsion of DARPA Suboff [J]. Ocean Engineering, 2013, 60: 68–80.

    Article  Google Scholar 

  11. Sezen, S., Dogrul A., Delen C. Investigation of selfpropulsion of DARPA Suboff by RANS method [J]. Ocean Engineering, 2018, 150: 258–271.

    Article  Google Scholar 

  12. Divsalar K. Improving the hydrodynamic performance of the SUBOFF bare hull model: A CFD approach [J]. Acta Mechanica Sinica, 2020, 36(1): 44–56.

    Article  Google Scholar 

  13. Jiang J., Qi J., Cai H. et al. Prediction and optimisation of low-frequency discrete-and broadband-spectrum marine propeller forces [J]. Applied Ocean Research, 2020, 98: 102114.

    Article  Google Scholar 

  14. Meng Q. J., Wan D. C. Numerical simulations of viscous flow around the obliquely towed KVLCC2M model in deep and shallow water [J]. Journal of Hydrodynamics, 2016, 28(3): 506–518.

    Article  Google Scholar 

  15. Alin N., Bensow R. E., Fureby C. et al. Current capabilities of DES and LES for submarines at straight course [J]. Journal of Ship Research, 2010, 54(3): 184–196.

    Article  Google Scholar 

  16. Larsson J., Kawai S., Bodart J. et al. Large eddy simulation with modeled wall-stress: Recent progress and future directions [J]. Mechanical Engineering Reviews, 2016, 3(1): 15–00418.

    Article  Google Scholar 

  17. Mahesh K., Kumar P., Gnanaskandan A. et al. LES applied to ship research [J]. Journal of Ship Research, 2015, 59(4): 238–245.

    Article  Google Scholar 

  18. Zhang W., Wan M., Xia Z. et al. Constrained large-eddy simulation of turbulent flow over inhomogeneous rough surfaces [J]. Theoretical and Applied Mechanics Letters, 2021, 11(1): 100229.

    Article  Google Scholar 

  19. Posa A., Broglia R., Balaras E. Recovery in the wake of in-line axial-flow rotors [J]. Physics of Fluids, 2022, 34(4): 045104.

    Article  Google Scholar 

  20. Posa A., Balaras E. A numerical investigation of the wake of an axisymmetric body with appendages [J]. Journal of Fluid Mechanics, 2016, 792: 470–498.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kumar P., Mahesh K. Analysis of axisymmetric boundary layers [J]. Journal of Fluid Mechanics, 2018, 849: 927–941.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar P., Mahesh K. Large-eddy simulation of flow over an axisymmetric body of revolution [J]. Journal of Fluid Mechanics, 2018, 853: 537–563.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Z., Xiong Y., Tu C. Numerical simulation and control of horseshoe vortex around an appendage-body junction [J]. Journal of Fluids and Structures, 2011, 27(1): 23–42.

    Article  Google Scholar 

  24. Wang S., Shi B., Li Y. et al. A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method [J]. Theoretical and Applied Mechanics Letters, 2016, 6(6): 302–305.

    Article  Google Scholar 

  25. Feng D., Wang X., Jiang F. et al. Large eddy simulation of DARPA SUBOFF for Re = 2.65-107 [J]. Journal of Coastal Research, 2015, 73: 687–691.

    Article  Google Scholar 

  26. Amarloo A., Forooghi P., Abkar M. Secondary flows in statistically unstable turbulent boundary layers with spanwise heterogeneous roughness [J]. Theoretical and Applied Mechanics Letters, 2022, 12(2): 100317.

    Article  Google Scholar 

  27. Dong B., Yin H., Han H. et al. Effects of opening on underwater vehicle's resistance and acoustics [C]. 2016 International Congress on Computation Algorithms in Engineering, Bangkok, Thailand, 2016.

    Google Scholar 

  28. Qin D., Pan G., Lee S. et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor [J]. Ocean Engineering, 2019, 188: 106228.

    Article  Google Scholar 

  29. Lungu A. A DES-based study of the flow around the self-propelled DARPA Suboff working in deep immersion and beneath the free-surface [J]. Ocean Engineering, 2022, 244: 110358.

    Article  Google Scholar 

  30. Bhushan S., Alam M. F., Walters D. K. Evaluation of hybrid RANS/LES models for prediction of flow around surface combatant and Suboff geometries [J]. Computers and Fluids, 2013, 88: 834–849.

    Article  Google Scholar 

  31. Huang T., Liu H. L., Groves N. et al. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: The DARPA SUBOFF experimental program [C]. Proceedings of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea, 1992.

    Google Scholar 

  32. Jiménez J. M., Reynolds R. T., Smits A. J. The effects of fins on the intermediate wake of a submarine model [J]. Journal of Fluids Engineering, 2010, 132(3): 031102.

    Article  Google Scholar 

  33. Jiménez J. M., Smits A. J. Tip and junction vortices generated by the sail of a yawed submarine model at low Reynolds numbers [J]. Journal of Fluids Engineering, 133(3): 034501.

  34. Morse N., Mahesh K. Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull [J]. Journal of Fluid Mechanics, 2021, 926: A18.

    Article  MathSciNet  MATH  Google Scholar 

  35. Choi H., Moin P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited [J]. Physics of Fluids, 2012, 24(1): 011702.

    Article  Google Scholar 

  36. Liefvendahl M., Fureby C. Grid requirements for LES of ship hydrodynamics in model and full scale [J]. Ocean Engineering, 2017, 143: 259–268.

    Article  Google Scholar 

  37. Piomelli U., Balaras E. Wall-layer models for large-eddy simulations [J]. Annual Review of Fluid Mechanics, 2002, 34: 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  38. Bose S. T., Park G. I. Wall-modeled large-eddy simulation for complex turbulent flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 535–561.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng X., Wang G. Progresses and challenges of high Reynolds number wall-bounded turbulence [J]. Advances in Mechanics, 2020, 50(1): 29–61(in Chinese).

    MathSciNet  Google Scholar 

  40. Yang X, Sadique J., Mittal R. et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows [J]. Physics of Fluids, 2015, 27(2): 025112.

    Article  Google Scholar 

  41. Ma M., Huang W. X., Xu C. X. A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method [J]. Physics of Fluids, 2019, 31(11): 115101.

    Article  Google Scholar 

  42. Fakhari A. A new wall model for large eddy simulation of separated flows [J]. Fluids, 2019, 4(4): 197.

    Article  Google Scholar 

  43. Wang L., Hu R., Zheng X. A comparative study on the large-scale-resolving capability of wall-modeled large-eddy simulation [J]. Physics of Fluids, 2020, 32(3): 035102.

    Article  Google Scholar 

  44. Posa A., Balaras E. A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution [J]. Journal of Fluid Mechanics, 2020, 884: A41.

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi B., Yang X., Jin G. et al. Wall-modeling for largeeddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method [J]. Applied Mathematics and Mechanics, 2019, 40(3): 305–320.

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou D., Wang K., Wang M. Large-eddy simulation of an axisymmetric boundary layer on a body of revolution [C]. American Institute of Aeronautics and Astronautics, Aviation 2020 Forum, Virtual Event, USA, 2020, 2989.

    Google Scholar 

  47. Huang T. T., Liu H. L., Groves N. C. Experiments of the DARPA (Defense Advanced Research Projects Agency) Suboff Program [R]. Bethesda, USA: David Taylor Research Center, 1989.

    Google Scholar 

  48. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200.

    Article  MATH  Google Scholar 

  49. Vanella M., Balaras E. A moving-least-squares reconstruction for embedded-boundary formulations [J]. Journal of Computational Physics, 2009, 228(18): 6617–6628.

    Article  MATH  Google Scholar 

  50. Posa A., Vanella M., Balaras E. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods [J]. Journal of Computational Physics, 2017, 351: 422–436.

    Article  MathSciNet  MATH  Google Scholar 

  51. Glegg S., Devenport W. Aeroacoustics of low Mach number flows: Fundamentals, analysis, and measurement [M]. London, UK: Academic Press, 2017.

    Google Scholar 

  52. Wang M., Freund J. B., Lele S. K. Computational prediction of flow-generated sound [J]. Annual Review of Fluid Mechanics, 2006, 38: 483–512.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang J., Wang K., Wang M. Computational prediction and analysis of rotor noise generation in a turbulent wake [J]. Journal of Fluid Mechanics, 2021, 908: A19.

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang M., Moin P. Computation of trailing-edge flow and noise using large-eddy simulation [J]. AIAA Journal, 2000, 38(12): 2201–2209.

    Article  Google Scholar 

  55. Wang M., Lele S. K., Moin P. Computation of quadrupole noise using acoustic analogy [J]. AIAA Journal, 1996, 34(11): 2247–2254.

    Article  MATH  Google Scholar 

  56. Casper J., Farassat, F. Broadband trailing edge noise predictions in the time domain [J]. Journal of Sound and Vibration, 2004, 271(1-2): 159–176.

    Article  Google Scholar 

  57. Keller J., Kumar P., Mahesh K. Examination of propeller sound production using large eddy simulation [J]. Physical Review Fluids, 2018, 3(6): 064601.

    Article  Google Scholar 

  58. Yao H., Zhang H., Liu H. et al. Numerical study of flow-excited noise of a submarine with full appendages [20] Posa A., Balaras E. A numerical investigation of the wake of an axisymmetric body with appendages [J]. Journal of Fluid Mechanics, 2016, 792: 470–498.

    Google Scholar 

  59. Kumar P., Mahesh K. Analysis of axisymmetric boundary layers [J]. Journal of Fluid Mechanics, 2018, 849: 927–941.

    Article  MathSciNet  MATH  Google Scholar 

  60. Kumar P., Mahesh K. Large-eddy simulation of flow over an axisymmetric body of revolution [J]. Journal of Fluid Mechanics, 2018, 853: 537–563.

    Article  MathSciNet  MATH  Google Scholar 

  61. Liu Z., Xiong Y., Tu C. Numerical simulation and control of horseshoe vortex around an appendage-body junction [J]. Journal of Fluids and Structures, 2011, 27(1): 23–42.

    Article  Google Scholar 

  62. Wang S., Shi B., Li Y. et al. A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method [J]. Theoretical and Applied Mechanics Letters, 2016, 6(6): 302–305.

    Article  Google Scholar 

  63. Feng D., Wang X., Jiang F. et al. Large eddy simulation of DARPA SUBOFF for Re = 2.65-107 [J]. Journal of Coastal Research, 2015, 73: 687–691.

    Article  Google Scholar 

  64. Amarloo A., Forooghi P., Abkar M. Secondary flows in statistically unstable turbulent boundary layers with spanwise heterogeneous roughness [J]. Theoretical and Applied Mechanics Letters, 2022, 12(2): 100317.

    Article  Google Scholar 

  65. Dong B., Yin H., Han H. et al. Effects of opening on underwater vehicle's resistance and acoustics [C]. 2016 International Congress on Computation Algorithms in Engineering, Bangkok, Thailand, 2016.

    Google Scholar 

  66. Qin D., Pan G., Lee S. et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor [J]. Ocean Engineering, 2019, 188: 106228.

    Article  Google Scholar 

  67. Lungu A. A DES-based study of the flow around the self-propelled DARPA Suboff working in deep immersion and beneath the free-surface [J]. Ocean Engineering, 2022, 244: 110358.

    Article  Google Scholar 

  68. Bhushan S., Alam M. F., Walters D. K. Evaluation of hybrid RANS/LES models for prediction of flow around surface combatant and Suboff geometries [J]. Computers and Fluids, 2013, 88: 834–849.

    Article  Google Scholar 

  69. Huang T., Liu H. L., Groves N. et al. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: The DARPA SUBOFF experimental program [C]. Proceedings of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea, 1992.

    Google Scholar 

  70. Jiménez J. M., Reynolds R. T., Smits A. J. The effects of fins on the intermediate wake of a submarine model [J]. Journal of Fluids Engineering, 2010, 132(3): 031102.

    Article  Google Scholar 

  71. Jiménez J. M., Smits A. J. Tip and junction vortices generated by the sail of a yawed submarine model at low Reynolds numbers [J]. Journal of Fluids Engineering, 133(3): 034501.

  72. Morse N., Mahesh K. Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull [J]. Journal of Fluid Mechanics, 2021, 926: A18.

    Article  MathSciNet  MATH  Google Scholar 

  73. Choi H., Moin P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited [J]. Physics of Fluids, 2012, 24(1): 011702.

    Article  Google Scholar 

  74. Liefvendahl M., Fureby C. Grid requirements for LES of ship hydrodynamics in model and full scale [J]. Ocean Engineering, 2017, 143: 259–268.

    Article  Google Scholar 

  75. Piomelli U., Balaras E. Wall-layer models for large-eddy simulations [J]. Annual Review of Fluid Mechanics, 2002, 34: 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  76. Bose S. T., Park G. I. Wall-modeled large-eddy simulation for complex turbulent flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 535–561.

    Article  MathSciNet  MATH  Google Scholar 

  77. Zheng X., Wang G. Progresses and challenges of high Reynolds number wall-bounded turbulence [J]. Advances in Mechanics, 2020, 50(1): 29–61(in Chinese).

    MathSciNet  Google Scholar 

  78. Yang X, Sadique J., Mittal R. et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows [J]. Physics of Fluids, 2015, 27(2): 025112.

    Article  Google Scholar 

  79. Ma M., Huang W. X., Xu C. X. A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method [J]. Physics of Fluids, 2019, 31(11): 115101.

    Article  Google Scholar 

  80. Fakhari A. A new wall model for large eddy simulation of separated flows [J]. Fluids, 2019, 4(4): 197.

    Article  Google Scholar 

  81. Wang L., Hu R., Zheng X. A comparative study on the large-scale-resolving capability of wall-modeled largeeddy simulation [J]. Physics of Fluids, 2020, 32(3): 035102.

    Article  Google Scholar 

  82. Posa A., Balaras E. A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution [J]. Journal of Fluid Mechanics, 2020, 884: A41.

    Article  MathSciNet  MATH  Google Scholar 

  83. Shi B., Yang X., Jin G. et al. Wall-modeling for largeeddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method [J]. Applied Mathematics and Mechanics, 2019, 40(3): 305–320.

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhou D., Wang K., Wang M. Large-eddy simulation of an axisymmetric boundary layer on a body of revolution [C]. American Institute of Aeronautics and Astronautics, Aviation 2020 Forum, Virtual Event, USA, 2020, 2989.

    Google Scholar 

  85. Huang T. T., Liu H. L., Groves N. C. Experiments of the DARPA (Defense Advanced Research Projects Agency) Suboff Program [R]. Bethesda, USA: David Taylor Research Center, 1989.

    Google Scholar 

  86. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200.

    Article  MATH  Google Scholar 

  87. Vanella M., Balaras E. A moving-least-squares reconstruction for embedded-boundary formulations [J]. Journal of Computational Physics, 2009, 228(18): 6617–6628.

    Article  MATH  Google Scholar 

  88. Posa A., Vanella M., Balaras E. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods [J]. Journal of Computational Physics, 2017, 351: 422–436.

    Article  MathSciNet  MATH  Google Scholar 

  89. Glegg S., Devenport W. Aeroacoustics of low Mach number flows: Fundamentals, analysis, and measurement [M]. London, UK: Academic Press, 2017.

    Google Scholar 

  90. Wang M., Freund J. B., Lele S. K. Computational prediction of flow-generated sound [J]. Annual Review of Fluid Mechanics, 2006, 38: 483–512.

    Article  MathSciNet  MATH  Google Scholar 

  91. Wang J., Wang K., Wang M. Computational prediction and analysis of rotor noise generation in a turbulent wake [J]. Journal of Fluid Mechanics, 2021, 908: A19.

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang M., Moin P. Computation of trailing-edge flow and noise using large-eddy simulation [J]. AIAA Journal, 2000, 38(12): 2201–2209.

    Article  Google Scholar 

  93. Wang M., Lele S. K., Moin P. Computation of quadrupole noise using acoustic analogy [J]. AIAA Journal, 1996, 34(11): 2247–2254.

    Article  MATH  Google Scholar 

  94. Casper J., Farassat, F. Broadband trailing edge noise predictions in the time domain [J]. Journal of Sound and Vibration, 2004, 271(1-2): 159–176.

    Article  Google Scholar 

  95. Keller J., Kumar P., Mahesh K. Examination of propeller sound production using large eddy simulation [J]. Physical Review Fluids, 2018, 3(6): 064601.

    Article  Google Scholar 

  96. Yao H., Zhang H., Liu H. et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method [J]. Engineering Analysis with Boundary Elements, 2017, 77: 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  97. Farassat F., Brown T. Development of a noncompact source theory with applications to helicopter rotors [C]. 3rd Aeroacoustics Conference, Palo Alto, USA, 1976, 563.

    Google Scholar 

  98. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2 [R]. Proceedings of the Summer Program, 1988.

    Google Scholar 

  99. Cheng H. Y., Bai X. R., Long X. P. et al. Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence [J]. Applied Mathematical Modelling, 2020, 77: 788–809.

    Article  MathSciNet  MATH  Google Scholar 

  100. Amini A., Reclari M., Sano T. et al. On the physical mechanism of tip vortex cavitation hysteresis [J]. Experiments in Fluids, 2019, 60(7): 118.

    Article  Google Scholar 

  101. Gorski J. J., Coleman R. M., Haussling H. J. Computation of incompressible flow around the DARPA SUBOFF bodies [R]. Bethesda, USA: David Taylor Research Center, 1990.

    Book  Google Scholar 

  102. Schewe G. On the structure and resolution of wallpressure fluctuations associated with turbulent boundarylayer flow [J]. Journal of Fluid Mechanics, 1983, 134: 311–328.

    Article  Google Scholar 

  103. Hu N., Herr M. Characteristics of wall pressure fluctuations for a flat plate turbulent boundary layer with pressure gradients [C]. 22nd American Institute of Aeronautics and Astronautics/Council of European Aerospace Societies Aeroacoustics Conference, Lyon, France, 2016, 2749.

    Google Scholar 

  104. Lee S. Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows [J]. AIAA Journal, 2018, 56(5): 1818–1829.

    Article  Google Scholar 

  105. Blake W. K. Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls [J]. Journal of Fluid Mechanics, 1970, 44(4): 637–660.

    Article  Google Scholar 

  106. Suryadi A., Herr M. Wall pressure spectra on a DU96-W-180 profile from low to pre-stall angles of attack [C]. 21st American Institute of Aeronautics and Astronautics/Council of European Aerospace Societies Aeroacoustics Conference, Dallas, USA, 2015, 2688.

    Google Scholar 

  107. Goody M. C., Simpson R. L. Surface pressure fluctuations beneath two-and three-dimensional turbulent boundary layers [J]. AIAA Journal, 2000, 38(10): 1822–1831.

    Article  Google Scholar 

  108. Farabee T. M., Casarella M. J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers [J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10): 2410–2420.

    Article  Google Scholar 

  109. Rozenberg Y., Robert G., Moreau S. Wall-pressure spectral model including the adverse pressure gradient effects [J]. AIAA Journal, 2012, 50(10): 2168–2179.

    Article  Google Scholar 

  110. Lockard D., Choudhari M. Noise radiation from a leadingedge slat [C]. 15th American Institute of Aeronautics and Astronautics/Council of European Aerospace Societies Aeroacoustics Conference, Miami, USA, 2009, 3101.

    Google Scholar 

  111. Shur M. L., Spalart P. R., Strelets M. K. Noise prediction for increasingly complex jets. Part I: Methods and tests [J]. International Journal of Aeroacoustics, 2005, 4(3): 213–245.

    Google Scholar 

  112. Inoue O., Hatakeyama N. Sound generation by a twodimensional circular cylinder in a uniform flow [J]. Journal of Fluid Mechanics, 2002, 471: 285–314.

    Article  MATH  Google Scholar 

  113. Chen L., MacGillivray I. Characteristics of sound radiation by turbulent flow over a hydrofoil and a bare-hull SUBOFF [C]. Australian Acoustical Society Acoustics Conference, Gold Coast, Australia, 2011.

    Google Scholar 

  114. Bayona V. Comparison of moving least squares and RBF+ poly for interpolation and derivative approximation [J]. Journal of Scientific Computing, 2019, 81(1): 486–512.

    Article  MathSciNet  MATH  Google Scholar 

  115. Long Y., Long X., P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics, 2017, 29(4): 610–620.

    Article  Google Scholar 

  116. Long Y., Long X., Ji B. et al. Verification and validation of Large Eddy Simulation of attached cavitating flow around a Clark-Y hydrofoil [J]. International Journal of Multiphase Flow, 2019, 115: 93–107.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102). The computations are conducted on Tianhe-1 at the National Supercomputer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-zhao Wang or Guo-wei He.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11988102, 11922214).

Biography: Zhi-teng Zhou (1996-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Zt., Xu, Zy., Wang, Sz. et al. Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution. J Hydrodyn 34, 533–554 (2022). https://doi.org/10.1007/s42241-022-0062-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0062-z

Key words

Navigation