Skip to main content
Log in

Effect of Active–Passive Deformation on the Thrust by the Pectoral Fins of Bionic Manta Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Bionic manta underwater vehicles will play an essential role in future oceans and can perform tasks, such as long-duration reconnaissance and exploration, due to their efficient propulsion. The manta wings’ deformation is evident during the swimming process. To improve the propulsion performance of the unmanned submersible, the study of the deformation into the bionic pectoral fin is necessary. In this research, we designed and fabricated a flexible bionic pectoral fin, which is based on the Fin Ray® effect with active and passive deformation (APD) capability. The APD fin was actively controlled by two servo motors and could be passively deformed to variable degrees. The APD fin was moved at 0.5 Hz beat frequency, and the propulsive performance was experimentally verified of the bionic pectoral fins equipped with different extents of deformation. These results showed that the pectoral fin with active–passive deformed capabilities could achieve similar natural biological deformation in the wingspan direction. The average thrust (T) under the optimal wingspan deformation is 61.5% higher than the traditional passive deformed pectoral fins. The obtained results shed light on the design and optimization of the bionic pectoral fins to improve the propulsive performance of unmanned underwater vehicles (UUV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Youssef, S. M., Soliman, M., Saleh, M. A., Elsayed, A. H., & Radwan, A. G. (2022). Design and control of soft biomimetic pangasius fish robot using Fin Ray effect and reinforcement learning. Scientific Reports, 12(1), 21861.

    Article  Google Scholar 

  2. Lindsey, C. C. (1978). Form, function, and locomotory habits in fish. Fish Physiology, 7, 1–100.

    Article  Google Scholar 

  3. Qiu, H. C., Chen, L. K., Ma, X. S., Bi, S. S., Wang, B., & Li, T. (2023). Analysis of heading stability due to interactions between pectoral and caudal fins in robotic boxfish locomotion. Journal of Bionic Engineering, 20(1), 390–405.

    Article  Google Scholar 

  4. Rosenberger, L. J. (2001). Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. Journal of Experimental Biology, 204(2), 379–394.

    Article  Google Scholar 

  5. Cao, Y., Bi, S. S., Cai, Y. R., & Wang, Y. (2015). Applying central pattern generators to control the robofish with oscillating pectoral fins. Industrial Robot: Industrial Robot, 42, 392–405.

    Article  Google Scholar 

  6. Tytell, E. D. (2004). The hydrodynamics of eel swimming II. Effect of swimming speed. Journal of Experimental Biology, 207(19), 3265–3279.

    Article  Google Scholar 

  7. Tytell, E. D., & Lauder, G. V. (2004). The hydrodynamics of eel swimming: I. Wake structure. Journal of Experimental Biology, 207(11), 1825–1841.

    Article  Google Scholar 

  8. Schaefer, J. T., & Summers, A. P. (2005). Batoid wing skeletal structure: Novel morphologies, mechanical implications, and phylogenetic patterns. Journal of Morphology, 264(3), 298–313.

    Article  Google Scholar 

  9. Fontanella, J. E., Fish, F. E., Barchi, E. I., Campbell-Malone, R., Nichols, R. H., DiNenno, N. K., & Beneski, J. T. (2013). Two- and three-dimensional geometries of batoids in relation to locomotor mode. Journal of Experimental Marine Biology and Ecology, 446, 273–281.

    Article  Google Scholar 

  10. Russo, R. S., Blemker, S. S., Fish, F. E., & Bart-Smith, H. (2015). Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: Implications for bio-inspired design. Bioinspiration & Biomimetics, 10(4), 046002.

    Article  Google Scholar 

  11. Frank, F., Christian, S., Keith, M., Liu, G., Dong, H. B., & Hilary, B. S. (2016). Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta. Aerospace, 3(3), 20.

    Article  Google Scholar 

  12. Lu, Y., Cao, Y. H., Pan, G., Huang, Q. G., Dong, X., & Cao, Y. (2022). Effect of cross-joints fin on the thrust performance of bionic pectoral fins. Journal of Marine Science and Engineering, 10(7), 869.

    Article  Google Scholar 

  13. Klausewitz, W. (1964). Der lokomotionsmodus der flugelrochen (myliobatoidei). Zoologischer Anzeiger, 173, 110–120.

    Google Scholar 

  14. Rosenberger, L. J., & Westneat, M. W. (1999). Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma (Chondrichthyes: Dasyatidae). Journal of Experimental Biology, 202(24), 3523–3539.

    Article  Google Scholar 

  15. He, J. J., Cao, Y. H., Huang, Q. G., Pan, G., Dong, X., & Cao, Y. (2022). Effects of bionic pectoral Fin Rays’ spanwise flexibility on forwarding propulsion performance. Journal of Marine Science and Engineering, 10(6), 783.

    Article  Google Scholar 

  16. Zheng, L., Bi, S., Cai, Y., & Niu, C. (2011). Design and optimization of a robotic fish mimicking cow-nosed ray. In 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, 2010, pp. 1075–1080.

  17. Menzer, A., Gong, Y., Fish, F. E., & Dong, H. H. (2022). Bio-inspired propulsion: Towards understanding the role of pectoral fin kinematics in manta-like swimming. Biomimetics, 7(2), 45.

    Article  Google Scholar 

  18. Chen, L. T., Qiao, T., Bi, S. S., Ren, X. W., & Cai, Y. R. (2020). Modeling and simulation research on soft pectoral fin of a bionic robot fish inspired by manta ray. Journal of Mechanical Engineering, 56, 182–190. https://doi.org/10.3901/jme.2020.19.182

    Article  Google Scholar 

  19. Chew, C. M., Lim, Q. Y., & Yeo, K. S. (2015). Development of propulsion mechanism for robot manta ray. IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, 1918–1923.

    Article  Google Scholar 

  20. Moored, K. W., Kemp, T. H., Houle, N. E., & Bart-Smith, H. (2011). Analytical predictions, optimization, and design of a tensegrity-based artificial pectoral fin. International Journal of Solids and Structures, 48(22–23), 3142–3159. https://doi.org/10.1016/j.ijsolstr.2011.07.008

    Article  Google Scholar 

  21. Moored, K. W., Fish, F. E., Kemp, T. H., & Bart-Smith, H. (2011). Batoid fishes: Inspiration for the next generation of underwater robots. Marine Technology Society Journal, 45(4), 99–109.

    Article  Google Scholar 

  22. Xing, C., Cao, Y., Cao, Y. H., Pan, G., & Huang, Q. (2022). Asymmetrical oscillating morphology hydrodynamic performance of a novel bionic pectoral fin. Journal of Marine Science and Engineering, 10(2), 289.

    Article  Google Scholar 

  23. Zhang, Y. X., Wang, S. P., Wang, X. J., & Geng, Y. X. (2018). Design and control of bionic manta ray robot with flexible pectoral fin. In 2018 IEEE 14th International Conference on Control and Automation (ICCA), Alaska, USA, 2018, pp. 1034–1039.

  24. Cai, Y. R., Bi, S. S., Li, G. Y., Hildre, H. P., & Zhang, H. X. (2018). From natural complexity to biomimetic simplification: The realization of bionic fish inspired by the cownose ray. IEEE Robotics & Automation Magazine, 26(3), 27–38.

    Article  Google Scholar 

  25. Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K., & Keplinger, C. (2018). Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, 3(14), eaar3276.

    Article  Google Scholar 

  26. Hubbard, J. J., Fleming, M., Palmre, V., Pugal, D., Kim, K. J., & Leang, K. K. (2013). Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE Journal of Oceanic Engineering, 39(3), 540–551.

    Article  Google Scholar 

  27. Li, T., Li, G. R., Liang, Y. M., Cheng, T. Y., Dai, J., Yang, X. X., Liu, B. Y., Zeng, Z. D., Huang, Z. L., Luo, Y. W., Xie, T., & Yang, W. (2017). Fast-moving soft electronic fish. Science Advances, 3(4), e1602045. https://doi.org/10.1126/sciadv.1602045

    Article  Google Scholar 

  28. Huang, W., Hongjamrassilp, W., Jung, J.-Y., Hastings, P. A., Lubarda, V. A., & McKittrick, J. (2017). Structure and mechanical implications of the pectoral fin skeleton in the longnose skate (Chondrichthyes, Batoidea). Acta biomaterialia, 51, 393–407.

    Article  Google Scholar 

  29. Wang, Z. L., Wang, Y. W., Li, J. A., Hang, G. R., IEEE. (2009). A micro biomimetic manta ray robot fish actuated by SMA. IEEE. https://doi.org/10.1109/robio.2009.5420423

    Article  Google Scholar 

  30. Lauder, G. V., Madden, P. G. A., Tangorra, J. L., Anderson, E., & Baker, T. V. (2011). Bioinspiration from fish for smart material design and function. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/20/9/094014

    Article  Google Scholar 

  31. Eftekhari, M., Rahmanian, S., & Moradi, P. (2017). Analysis of bio-inspired kinematic patterns pectoral fin with shape memory alloy (SMA). American Journal of Data Mining and Knowledge Discovery, 2(1), 1–7.

    Google Scholar 

  32. Seok, S., Onal, C. D., Cho, K.-J., Wood, R. J., Rus, D., & Kim, S. (2012). Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics, 18(5), 1485–1497.

    Article  Google Scholar 

  33. Kim, H.-S., Heo, J.-K., Choi, I.-G., Ahn, S.-H., & Chu, W.-S. (2021). Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot. Bioinspiration & Biomimetics, 16(6), 066006.

    Article  Google Scholar 

  34. Ionov, L. (2014). Hydrogel-based actuators: Possibilities and limitations. Materials Today, 17(10), 494–503.

    Article  Google Scholar 

  35. Suzumori, K., Endo, S., Kanda, T., Kato, N., & Suzuki, H. (2007). A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, pp. 4975–4980.

  36. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617), 451–455.

    Article  Google Scholar 

  37. Park, S.-J., Gazzola, M., Park, K. S., Park, S., Di Santo, V., Blevins, E. L., et al. (2016). Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 353, 158–162.

    Article  Google Scholar 

  38. Nawroth, J. C., Lee, H., Feinberg, A. W., Ripplinger, C. M., McCain, M. L., Grosberg, A., et al. (2012). A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 30(8), 792–797.

    Article  Google Scholar 

  39. Brower, T. P. (2006). Design of a manta ray inspired underwater propulsive mechanism for long range, low power operation. Medford: Tufts University.

    Google Scholar 

  40. Chen, L. K., Bi, S. S., Cai, Y. R., Cao, Y., & Pan, G. (2022). Design and experimental research on a bionic robot fish with tri-dimensional soft pectoral fins inspired by cownose ray. Journal of Marine Science and Engineering, 10(4), 537.

    Article  Google Scholar 

  41. Hosale, M., & Kievid, C. (2010). Modulating territories, penetrating boundaries. Footprint, 55–68.

  42. Pfaff, O., Simeonov, S., Cirovic, I., & Stano, P. (2011). Application of Fin Ray effect approach for production process automation. Annals of DAAAM & Proceedings, 22(1), 1247–1249.

    Article  Google Scholar 

  43. Zhou, L., Ren, L. L., Chen, Y., Niu, S. C., Han, Z. W., & Ren, L. Q. (2021). Bio-inspired soft grippers based on impactive gripping. Advanced Science. https://doi.org/10.1002/advs.202002017

    Article  Google Scholar 

  44. Berlinger, F., Saadat, M., Haj-Hariri, H., Lauder, G., & Nagpal, R. (2021). Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot. Bioinspiration & Biomimetics, 16(2), 026018.

    Article  Google Scholar 

  45. Aiello, B. R., Hardy, A. R., Cherian, C., Olsen, A. M., Ahn, S. E., Hale, M. E., & Westneat, M. W. (2018). The relationship between pectoral Fin Ray stiffness and swimming behavior in Labridae: insights into design, performance and ecology. Journal of Experimental Biology, 221(1), jeb163360.

    Google Scholar 

  46. Manoonpong, P., Rajabi, H., Larsen, J. C., Raoufi, S. S., Asawalertsak, N., Homchanthanakul, J., et al. (2022). Fin Ray crossbeam angles for efficient foot design for energy-efficient robot locomotion. Advanced Intelligent Systems, 4(1), 2100133.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant no. 2022YFC2805200, 2020YFB1313200); the National Natural Science Foundation of China (Grant no. 52001260, 52201381, 52371338); Ningbo Natural Science Foundation (Grant no. 2022J062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cao.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article, and the authors have no competing interests to declare relevant to this article's content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Meng, S., Xing, C. et al. Effect of Active–Passive Deformation on the Thrust by the Pectoral Fins of Bionic Manta Robot. J Bionic Eng 21, 718–728 (2024). https://doi.org/10.1007/s42235-023-00463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00463-6

Keywords

Navigation