Skip to main content
Log in

Printable Kirigami-inspired Flexible and Soft Anthropomorphic Robotic Hand

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

We present a kirigami-inspired design scheme for a robotic hand by 3D printable folds and cuts. The unique contribution is the printable flexible hand, which provides flexibility and maneuverability that is unavailable in rigid robotic systems. The integration of sensors in the robotic system enables force adjustment for robotic systems applicable in the future. The experimental results have shown that this design can perform everyday tasks through grasping and pinching different items. The fingers can bend from 40 to 100 degrees. Furthermore, the direct printable kirigami cuts and folds from soft elastic printable materials have significant potential for prosthetic devices. The printable kirigami design framework opens the possibility for future developments and modifications in numerous robotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lu, W. L., Zhou, P., Zheng, S. B., & Xue, D. (2017). A survey on the current status of rehabilitation services and burnout of rehabilitation professionals in Shanghai. Work, 56(2), 319–325.

    Article  Google Scholar 

  2. Chan, Y.H., Tse, Z., & Ren, H.L. (2017). Design evolution and pilot study for a kirigami-inspired flexible and soft anthropomorphic robotic hand. In 2017 18th International Conference on Advanced Robotics (ICAR) (pp. 432–437). IEEE.

    Google Scholar 

  3. Majidi, C. (2014). Soft robotics: A perspective—current trends and prospects for the future. Soft Robotics, 1(1), 5–11.

    Article  Google Scholar 

  4. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M., & Walsh, C. J. (2013). Towards a soft pneumatic glove for hand rehabilitation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1512–1517). IEEE.

  5. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143.

    Article  Google Scholar 

  6. Noritsugu, T., Takaiwa, M., & Sasaki, D. (2008). Power assist wear driven with pneumatic rubber artificial muscles. In 2008 15th International Conference on Mechatronics and Machine Vision in Practice (pp. 539–544). IEEE

  7. Mozaffari Foumashi, M., Troncossi, M., & Parenti Castelli, V. (2011). State-of-the-art of hand exoskeleton systems.

  8. Johnson, M., Chen, Y., Hovet, S., Xu, S., Wood, B., Ren, H., Tokuda, J., & Tse, Z. T. H. (2017). Fabricating biomedical origami: A state-of-the-art review. International Journal of Computer Assisted Radiology and Surgery, 12(11), 2023–2032.

    Article  Google Scholar 

  9. Song, Z. (2016). Studies of origami and kirigami and their applications. Arizona State University

  10. Rossiter, J., & Sareh, S. (2014). Kirigami design and fabrication for biomimetic robotics. In Bioinspiration, Biomimetics, and Bioreplication 9055, 90550G). International Society for Optics and Photonics

  11. Schenk, M., Guest, S.D. (2011). Origami folding: A structural engineering approach. In Origami 5: Fifth International Meeting of Origami Science, Mathemat- ics, and Education, pages 291–304. CRC Press, Boca Raton, FL.

  12. Obi, O. F. (2016). Hand anthropometry survey of rural farm workers in south-eastern Nigeria. Ergonomics, 59(4), 603–611.

    Article  Google Scholar 

  13. Ladda, R., Bhandari, A. J., Kasat, V. O., & Angadi, G. S. (2013). A new technique to determine vertical dimension of occlusion from anthropometric measurements of fingers. Indian Journal of Dental Research, 24(3), 316.

    Article  Google Scholar 

  14. Chen, C. F., Appendino, S., Battezzato, A., Favetto, A., Mousavi, M., & Pescarmona, F. (2013). Constraint study for a hand exoskeleton: Human hand kinematics and dynamics. Journal of Robotics, 2013, 910961

    Google Scholar 

  15. Li, M., Zhuo, Y.Y., He, B., Liang, Z.T., Xu, G.H., Xie, J., & Zhang, S.C. (2019). A 3D-printed soft hand exoskeleton with finger abduction assistance. In 2019 16th International Conference on Ubiquitous Robots (UR) (pp. 319–322). IEEE

  16. Yu, S.Y., Perez, H., Barkas, J., Mohamed, M., Eldaly, M., Huang, T. H., Yang, X.L., Su, H., Cortes, M.M, & Edwards, D. J. (2019). A soft high force hand exoskeleton for rehabilitation and assistance of spinal cord injury and stroke individuals. In Frontiers in Biomedical Devices 41037, V001T09A011. American Society of Mechanical Engineers.

  17. Sarac, M., Solazzi, M., Sotgiu, E., Bergamasco, M., & Frisoli, A. (2017). Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica, 52(3), 749–761.

    Article  MathSciNet  Google Scholar 

  18. Yun, Y. M., Dancausse, S., Esmatloo, P., Serrato, A., Merring, C. A., Agarwal, P., et al. (2017). Maestro: An EMG-driven assistive hand exoskeleton for spinal cord injury patients. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2904–2910). IEEE.

    Google Scholar 

  19. Bajaj, A., Jain, V., Kumar, P., Unal, A., & Saxena, A. (2021). Soft hand exoskeleton for adaptive grasping using a compact differential mechanism. In Mechanism and Machine Science (pp. 733–746). Springer, Singapore.

  20. Lipson, H. (2014). Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics, 1(1), 21–27.

    Article  Google Scholar 

  21. du Plessis, T., Djouani, K., & Oosthuizen, C. (2021). A review of active hand exoskeletons for rehabilitation and assistance. Robotics, 10(1), 40.

    Article  Google Scholar 

  22. Fu, C., Xia, Z., Hurren, C., Nilghaz, A., & Wang, X. (2022). Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 196, 113690.

  23. Garcia, L., Kerns, G., O’Reilley, K., Okesanjo, O., Lozano, J., Narendran, J., et al. (2022). The role of soft robotic micromachines in the future of medical devices and personalized medicine. Micromachines, 13(1), 28.

    Article  Google Scholar 

  24. Shahid, T., Gouwanda, D., Nurzaman, S. G., Gopalai, A. A., & Kheng, T. K. (2021). Development of an electrooculogram-activated wearable soft hand exoskeleton. In 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), (pp. 433–438). IEEE.

    Google Scholar 

  25. Pérez Vidal, A. F., Rumbo Morales, J. Y., Ortiz Torres, G., Sorcia Vázquez, F. D. J., Cruz Rojas, A., Brizuela Mendoza, J. A., & Rodríguez Cerda, J. C. (2021). Soft exoskeletons: development, requirements, and challenges of the last decade. In Actuators 10(7), 166. Multidisciplinary Digital Publishing Institute.

  26. Li, M., Chen, J. Z., He, G., Cui, L., Chen, C., Secco, E. L., & Wurdemann, H. (2021). Attention enhancement for exoskeleton-assisted hand rehabilitation using fingertip haptic stimulation. Front Robot AI, 8, 144.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Singapore Academic Research Fund under Grant R397000353114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren.

Ethics declarations

Conflict of interest

Each of the authors (Y Chan, Z Tse, H Ren) declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, Y., Tse, Z.TH. & Ren, H. Printable Kirigami-inspired Flexible and Soft Anthropomorphic Robotic Hand. J Bionic Eng 19, 668–677 (2022). https://doi.org/10.1007/s42235-022-00182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00182-4

Keywords

Navigation