Skip to main content
Log in

Plant vs. Animal Prototype for Designing Bio-inspired PEMFC Flow Fields: Corn Veins or Murray’s Law?

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Designing bio-inspired flow fields holds great potential in improving the performance of Proton Exchange Membrane Fuel Cell (PEMFC). Two kinds of biological prototypes are widely used: plant prototype and animal prototype. It remains a question which one of these prototypes is more appropriate for the scenario of PEMFC. Here, a comparative study was conducted to compare bionic flow fields based on animal and plant prototypes. First, a Corn Leaf Vein Mathematical Model (CLMM) was established by extracting structural parameters from corn leaves of two growth stages. Then the obtained CLMM and well-known Murray’s law were employed to design bionic flow fields corresponding to the plant and animal prototypes, respectively, which have been subsequently compared by numerical investigations. The results demonstrate that the flow field guided by Murray’s law outperforms the counterpart based on the structural parameters of CLMM in terms of PEMFC net output power, mass transport, water management and pressure drop, suggesting that animal circulation system is more suitable to the bionic flow field design of PEMFC than plant leaf veins. The work may also offer valuable insights into the design of other flow fields related to electrochemical energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810–853.

    Article  Google Scholar 

  2. Jiao, K., Xuan, J., Du, Q., Bao, Z. M., Xie, B., Wang, B. W., Zhao, Y., Fan, L. H., Wang, H. Z., Hou, Z. J., Huo, S., Brandon, N. P., Yin, Y., & Guiver, M. D. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595, 361–369.

    Article  Google Scholar 

  3. Kahraman, H., & Orhan, M. F. (2017). Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling. Energy Conversion and Management, 133, 363–384.

    Article  Google Scholar 

  4. Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F. N., Durrant, A., Thompson, J., Baroutaji, A., & Olabi, A. G. (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews, 111, 236–260.

    Article  Google Scholar 

  5. Marappan, M., Palaniswamy, K., Velumani, T., Chul, K. B., Velayutham, R., Shivakumar, P., & Sundaram, S. (2021). Performance studies of proton exchange membrane fuel cells with different flow field designs – review. The Chemical Record, 21, 663–714.

    Article  Google Scholar 

  6. Korkischko, I., Carmo, B. S., & Fonseca, F. C. (2017). Shape optimization of PEMFC flow-channel cross-sections. Fuel Cells, 17, 809–815.

    Article  Google Scholar 

  7. Mohammedi, A., Sahli, Y., & Moussa, H. B. (2020). 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels. Fuel, 263, 116713.

    Article  Google Scholar 

  8. André, J., Claude, E., Sirac, D., Gastaldin, D., & Rossinot, E. (2020). PEMFC flow-field design, channel/land width ratio optimization. Fuel Cells, 20, 231–235.

    Article  Google Scholar 

  9. Kerkoub, Y., Benzaoui, A., Haddad, F., & Ziari, Y. K. (2018). Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Conversion and Management, 174, 260–275.

    Article  Google Scholar 

  10. Selvaraj, A. S., & Rajagopal, T. K. R. (2020). Numerical investigation on the effect of flow field and landing to channel ratio on the performance of PEMFC. International Journal of Energy Research, 44, 171–191.

    Article  Google Scholar 

  11. Li, W. Z., Yang, W. W., Wang, N., Jiao, Y. H., Yang, Y., & Qu, Z. G. (2020). Optimization of blocked channel design for a proton exchange membrane fuel cell by coupled genetic algorithm and three-dimensional CFD modeling. International Journal of Hydrogen Energy, 45, 17759–17770.

    Article  Google Scholar 

  12. Yin, Y., Wu, S. Y., Qin, Y. Z., Otoo, O. N., & Zhang, J. F. (2020). Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell. Applied Energy, 271, 115257.

    Article  Google Scholar 

  13. Zhang, S. Y., Qu, Z. G., Xu, H. T., Talkhoncheh, F. K., Liu, S., & Gao, Q. (2021). A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel. International Journal of Hydrogen Energy, 46, 27700–27708.

    Article  Google Scholar 

  14. Heidary, H., Kermani, M. J., Advani, S. G., & Prasad, A. K. (2016). Experimental investigation of in-line and staggered blockages in parallel flow field channels of PEM fuel cells. International Journal of Hydrogen Energy, 41, 6885–6893.

    Article  Google Scholar 

  15. Wang, X. F., Qin, Y. Z., Wu, S. Y., Xiang, S. G., Zhang, J. F., & Yin, Y. (2020). Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance. Journal of Power Sources, 457, 228034.

    Article  Google Scholar 

  16. Konno, N., Mizuno, S., Nakaji, H., & Ishikawa, Y. (2015). Development of compact and high-performance fuel cell stack. SAE International Journal of Alternative Powertrains, 4, 123–129.

    Article  Google Scholar 

  17. Li, W. K., Zhang, Q. L., Wang, C., Yan, X. H., Shen, S. Y., Xia, G. F., Zhu, F. J., & Zhang, J. L. (2017). Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Applied Energy, 195, 278–288.

    Article  Google Scholar 

  18. Shen, J., Tu, Z. K., & Chan, S. H. (2020). Performance enhancement in a proton exchange membrane fuel cell with a novel 3D flow field. Applied Thermal Engineering, 164, 114464.

    Article  Google Scholar 

  19. Arvay, A., French, J., Wang, J. C., Peng, X. H., & Kannan, A. M. (2013). Nature inspired flow field designs for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 38, 3717–3726.

    Article  Google Scholar 

  20. Iranzo, A., Arredondo, C. H., Kannan, A. M., & Rosa, F. (2020). Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy, 190, 116435.

    Article  Google Scholar 

  21. Guo, N., Leu, M. C., & Koylu, U. O. (2014). Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 39, 21185–21195.

    Article  Google Scholar 

  22. Trogadas, P., Cho, J. I. S., Neville, T. P., Marquis, J., Wu, B., Brett, D. J. L., & Coppens, M. O. (2018). A lung-inspired approach to scalable and robust fuel cell design. Energy & Environmental Science, 11, 136–143.

    Article  Google Scholar 

  23. Wen, D. H., Yin, L. Z., Piao, Z. Y., Lu, C. D., Li, G., & Leng, Q. H. (2017). A novel intersectant flow field of metal bipolar plate for proton exchange membrane fuel cell. International Journal of Energy Research, 41, 2184–2193.

    Article  Google Scholar 

  24. Dong, J. H., Liu, S. F., & Liu, S. H. (2020). Numerical investigation of novel bio-inspired flow field design scheme for PEM fuel cell. Journal of Renewable and Sustainable Energy, 12, 044303.

    Article  Google Scholar 

  25. Çelik, E., & Karagöz, İ. (2020). Polymer electrolyte membrane fuel cell flow field designs and approaches for performance enhancement. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234, 1189–1214.

    Google Scholar 

  26. Cho, J. I. S., Neville, T. P., Trogadas, P., Bailey, J., Shearing, P., Brett, D. J. L., & Coppens, M. O. (2018). Capillaries for water management in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 43, 21949–21958.

    Article  Google Scholar 

  27. Dong, J., Xu, X. H., & Xu, B. (2017). CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack. Applied Thermal Engineering, 124, 286–293.

    Article  Google Scholar 

  28. Zheng, X. F., Shen, G. F., Wang, C., Li, Y., Dunphy, D., Hasan, T., Brinker, C. J., & Su, B. L. (2017). Bio-inspired Murray materials for mass transfer and activity. Nature Communications, 8, 14921.

    Article  Google Scholar 

  29. Sauermoser, M., Kizilova, N., Pollet, B. G., & Kjelstrup, S. (2020). Flow field patterns for proton exchange membrane fuel cells. Frontiers in Energy Research, 8, 13.

    Article  Google Scholar 

  30. Xiong, K. N., Wu, W., Wang, S. F., & Zhang, L. (2021). Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review. Applied Energy, 301, 117443.

    Article  Google Scholar 

  31. Murray, C. D. (1926). The physiological principle of minimum work applied to the angle of branching of arteries. Journal of General Physiology, 9, 835–841.

    Article  Google Scholar 

  32. Xu, P., Sasmito, A. P., Yu, B. M., & Mujumdar, A. S. (2016). Transport phenomena and properties in treelike networks. Applied Mechanics Reviews, 68, 040802.

    Article  Google Scholar 

  33. Ji, Y. D., Ding, X. H., Li, H., & Xiong, M. (2018). Layout design of conductive heat channel by emulating natural branch systems. Journal of Bionic Engineering, 15, 567–578.

    Article  Google Scholar 

  34. Sack, L., & Scoffoni, C. (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983–1000.

    Article  Google Scholar 

  35. Ye, H., Yuan, Z., & Zhang, S. Q. (2013). The heat and mass transfer analysis of a leaf. Journal of Bionic Engineering, 10, 170–176.

    Article  Google Scholar 

  36. Pirozzoli, S. (2018). On turbulent friction in straight ducts with complex cross-section: The wall law and the hydraulic diameter. Journal of Fluid Mechanics, 846, R1.

    Article  MathSciNet  MATH  Google Scholar 

  37. Um, S., & Wang, C. Y. (2004). Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. Journal of Power Sources, 125, 40–51.

    Article  Google Scholar 

  38. Yuan, W., Tang, Y., Pan, M. Q., Li, Z. T., & Tang, B. (2010). Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renewable Energy, 35, 656–666.

    Article  Google Scholar 

  39. Li, H. W., Xu, B. S., Lu, G. L., Du, C. H., & Huang, N. (2021). Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm. Energy Conversion and Management, 236, 114063.

    Article  Google Scholar 

  40. Sassin, M. B., Garsany, Y., Atkinson, R. W., Hjelm, R. M. E., & Swider-Lyons, K. E. (2019). Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. International Journal of Hydrogen Energy, 44, 16944–16955.

    Article  Google Scholar 

  41. Iranzo, A., Muñoz, M., Rosa, F., & Pino, J. (2010). Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation. International Journal of Hydrogen Energy, 35, 11533–11550.

    Article  Google Scholar 

  42. Atyabi, S. A., & Afshari, E. (2019). Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. Journal of Cleaner Production, 214, 738–748.

    Article  Google Scholar 

  43. Sierra, J. M., Figueroa-Ramírez, S. J., Díaz, S. E., Vargas, J., & Sebastian, P. J. (2014). Numerical evaluation of a PEM fuel cell with conventional flow fields adapted to tubular plates. International Journal of Hydrogen Energy, 39, 16694–166705.

    Article  Google Scholar 

  44. Li, W. Z., Yang, W. W., Zhang, W. Y., Qu, Z. G., & He, Y. L. (2019). Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation. International Journal of Hydrogen Energy, 44, 22194–22209.

    Article  Google Scholar 

  45. Lorenzini-Gutierrez, D., Hernandez-Guerrero, A., Ramos-Alvarado, B., Perez-Raya, I., & Alatorre-Ordaz, A. (2013). Performance analysis of a proton exchange membrane fuel cell using tree-shaped designs for flow distribution. International Journal of Hydrogen Energy, 38, 14750–14763.

    Article  Google Scholar 

  46. Ferng, Y. M., & Su, A. (2007). A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance. International Journal of Hydrogen Energy, 32, 4466–4476.

    Article  Google Scholar 

  47. Zhang, G. B., Fan, L. H., Sun, J., & Jiao, K. (2017). A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. International Journal of Heat and Mass Transfer, 115, 714–724.

    Article  Google Scholar 

  48. Fan, L. H., Niu, Z. Q., Zhang, G. B., & Jiao, K. (2018). Optimization design of the cathode flow channel for proton exchange membrane fuel cells. Energy Conversion and Management, 171, 1813–1821.

    Article  Google Scholar 

  49. Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer electrolyte fuel cell model. Journal of The Electrochemical Society, 138, 2334–2342.

    Article  Google Scholar 

  50. Chen, D. F., Zou, Y. T., Shi, W. D., Serbin, S., & You, H. L. (2021). Proton exchange membrane fuel cells using new cathode field designs of multi-inlet shunt intake design. International Journal of Energy Research, 45, 9948–9960.

    Article  Google Scholar 

  51. Zhang, G. B., Wu, L. Z., Jiao, K., Tian, P. J., Wang, B. W., Wang, Y., & Liu, Z. (2020). Optimization of porous media flow field for proton exchange membrane fuel cell using a data-driven surrogate model. Energy Conversion and Management, 226, 113513.

    Article  Google Scholar 

  52. He, Q., Zheng, H. F., Ma, X. L., Wang, L., Kong, H., & Zhu, Z. Y. (2022). Artificial intelligence application in a renewable energy-driven desalination system: A critical review. Energy and AI, 7, 100123.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank www.51yuansu.com for the human body image and the corn image in Fig. 4. This work was supported by the National Natural Science Foundation of China (51975245 and 52075214), Jilin Provincial Science & Technology Department (20200201058JC and 20190303039SF), Key Science and Technology R&D Projects of Jilin Province (2020C023-3), Program of Jilin University Science and Technology Innovative Research Team (2020TD-03), Youth Development Program of Jilin University (2020-JCXK-22), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guolong Lu or Zhenning Liu.

Ethics declarations

Conflict of Interest

The authors declare no known competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5776 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Zhao, T., Jiang, K. et al. Plant vs. Animal Prototype for Designing Bio-inspired PEMFC Flow Fields: Corn Veins or Murray’s Law?. J Bionic Eng 19, 761–776 (2022). https://doi.org/10.1007/s42235-022-00174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00174-4

Keywords

Navigation