Skip to main content
Log in

A Review of Biological Fluid Power Systems and Their Potential Bionic Applications

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Nature has always inspired human achievements in industry, and biomimetics is increasingly being applied in fluid power technology. Arachnida use hydraulic forces, rather than muscle, for leg extensions during locomotion. Many cold-blooded and soft-bodied organisms rely on a hydrostatic skeleton to transmit force, which involves a hydraulic mechanism. Biological hydraulic transmission differs from engineering hydraulic transmission in many aspects, such as in energy transfer and transformation, the movement mode, environmental friendliness, system pressure level, and energy supplement mode. The existence of a hydraulic mechanism in a biological drive requires 3 features: a power source, cavity, and working medium. The power source is similar to a hydraulic pump, and the cavity is similar to a hydraulic cylinder, both of which are necessary for producing deformation. The working medium is similar to a hydraulic fluid. Under these 3 conditions, a biological flow is generated inside or outside the body to meet the requirements of a biological drive. This paper reviews the biological organisms that employ hydraulic systems, identifies related studies on these biological hydraulic systems, and summarizes the mechanisms involved in using hydraulic pressure to achieve graceful and agile movements. This in-depth study and exploration of biological hydraulic systems can provide a good reference for solving the challenges of using hydraulic systems, such as increasing the energy efficiency, improving reliability, building smart components and systems, reducing the size and weight of components, reducing the environmental impact of systems, and improving and applying energy storage and redeployment capabilities. This paper also includes a detailed discussion of new ideas and innovative sources for the future development of hydraulic systems. In contrast with the bio-inspired designs used in other engineering fields, very few studies have reported on using bio-inspired methods for hydraulic transmission techniques. The aim of this work is to attract the attention of researchers to help address this gap and to promote the use of biologically-inspired methods to improve engineering fluid power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabie M G. Fluid Power Engineering, McGraw-Hill Education, New York, USA, 2009.

    Google Scholar 

  2. Backe W. The present and future of fluid power. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1993, 207, 193–212.

    Article  Google Scholar 

  3. Burrows C R. Fluid power systems—some research issues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214, 203–220.

    Google Scholar 

  4. Yang H-Y, Pan M. Engineering research in fluid power: A review. Journal of Zhejiang University-SCIENCE A, 2015, 16, 427–442.

    Article  Google Scholar 

  5. Edge K A. The control of fluid power systems-responding to the challenges. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1997, 211, 91–110.

    Article  Google Scholar 

  6. Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics. Science, 2007, 318, 1088–1093.

    Article  Google Scholar 

  7. Parry D A, Brown R H J. The hydraulic mechanism of the spider leg. Journal of Experimental Biology, 1959, 36, 423–433.

    Google Scholar 

  8. Prusch R D, Whoriskey F. Maintenance of fluid volume in the starfish water vascular system. Nature, 1976, 262, 577–578.

    Article  Google Scholar 

  9. Cahn R W. Biomimetics: Biologically inspired technologies. Nature, 2006, 444, 425–426.

    Article  Google Scholar 

  10. Meller M, Garcia E. Bioinspired hydraulic control systems. Proceedings of SPIE, Bioinspiration, Biomimetics, and Bioreplication, 2013, 8686, 11.

    Google Scholar 

  11. Ugurlu B, Havoutis I, Semini C, Caldwell D G. Dynamic trot-walking with the hydraulic quadruped robot — HyQ: Analytical trajectory generation and active compliance control. IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013, 6044–6051.

    Chapter  Google Scholar 

  12. Semini C, Tsagarakis N G, Guglielmino E, Focchi M, Cannella F, Caldwell D G. Design of HyQ — A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225, 831–849.

    Article  Google Scholar 

  13. Semini C, Goldsmith J, Rehman B U, Frigerio M, Barasuol V, Focchi M. Design overview of the hydraulic quadruped robots. The Fourteenth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2015, 20–22.

    Google Scholar 

  14. Zhu J, Wang Y, Jiang J, Sun B, Cao H. Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton. International Journal of Advanced Robotic Systems, 2017, 14, 1–12.

    Google Scholar 

  15. Aliman N, Ramli R, Haris S M. Design and development of lower limb exoskeletons: A survey. Robotics and Autonomous Systems, 2017, 95, 102–116.

    Article  Google Scholar 

  16. Whitman J S, Meller M, Garcia E. Improving energy efficiency in robot limbs through hydraulic dangle. Bioinspiration, Biomimetics, and Bioreplication International Society for Optics and Photonics, 2015, 9429, 94291M.

    Google Scholar 

  17. Moalli J E, Summers A P. The wonders of whirl. Nature, 2016, 538, 315.

    Article  Google Scholar 

  18. Vogel S. Nature’s pumps. American Scientist, 1994, 82, 464–471.

    Google Scholar 

  19. Vogel S. Living in a physical world X. Pumping fluids through conduits. Journal of Biosciences, 2007, 32, 207–222.

    Article  Google Scholar 

  20. Vogel S. Life in Moving Fluids: The Physical Biology of Flow, Princeton University Press, USA, 1994

    Google Scholar 

  21. Vogel S. Comparative Biomechanics: Life’s Physical World. Princeton University Press, USA, 2013

    MATH  Google Scholar 

  22. Vogel S. Why the Wheel is Round: Muscles, Technology, and How We Make Things Move, University of Chicago Press, USA, 2016

    Book  Google Scholar 

  23. Bach D, Schmich F, Masselter T, Speck T. A review of selected pumping systems in nature and engineering-potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspiration & Biomimetics, 2015, 10, 051001.

    Article  Google Scholar 

  24. Trimmer B. A Journal of soft robotics: Why now? Soft Robotics, 2014, 1, 1–4.

    Article  Google Scholar 

  25. Afolayan M O. Copying nature — A design of hyperredundant robot joint/support based on hydrostatic skeleton. Conference on Biomimetic and Biohybrid Systems, 2015, 50–63.

  26. Messner P W C, Paik J, Shepherd R, Kim S, Trimmer B A. Energy for biomimetic robots: Challenges and solutions. Soft Robotics, 2014, 1, 106–109.

    Article  Google Scholar 

  27. Li S, Vogt D M, Rus D, Wood R J. Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13132–13137.

    Article  Google Scholar 

  28. Kier W M. The diversity of hydrostatic skeletons. The Journal of experimental biology, 2012, 215, 1247–1257.

    Article  Google Scholar 

  29. Kochová P, Tonar Z. Structural and mechanical properties of gastropod connective and smooth muscle tissue. Experimental Mechanics, 2014, 54, 791–803.

    Article  Google Scholar 

  30. Seo E, Ohishi K, Maruyama T, Imaizumi-Ohashi Y, Murakami M, Seo Y. Magnetic resonance imaging analysis of water flow in the mantle cavity of live Mytilus galloprovincialis. The Journal of Experimental Biology, 2014, 217, 2277–2287.

    Article  Google Scholar 

  31. Szymik B G, Satterlie R A. Circulation of hemocoelic fluid during slow and fast swimming in the pteropod mollusc Clione limacina. Invertebrate Biology, 2017, 136, 290–300.

    Article  Google Scholar 

  32. Liu C B, Chen S S, Sheng C, Qian Z H, Ren L Q, Ren L. Study on bionic hydraulic driving mechanism of spider and its bio-inspiration. Journal of Jilin University (Engineering and Technology Edition), 2019, https://doi.org/10.13229/j.cnki.jdxbgxb20180545. (in Chinese)

  33. Ijspeert A J. Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 2014, 346, 196–203.

    Article  Google Scholar 

  34. Booster N A, Su F Y, Adolph S C, Ahn A N. Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): High speed may limit hydraulic joint actuation. The Journal of Experimental Biology, 2015, 218, 977–782.

    Article  Google Scholar 

  35. Fratzl P. Applied physics: The virtues of tiling. Nature, 2014, 516, 178–179.

    Article  Google Scholar 

  36. Palmgren P. The mechanism of the extrinsic coxal muscles of spiders. Ann Zool Fennici, 1981, 18, 203–207.

    Google Scholar 

  37. Kropf C. Hydraulic system of locomotion. In: Nentwig W ed., Spider Ecophysiology, Springer, Berlin, Germany, 2013, 43–56.

    Chapter  Google Scholar 

  38. Blickhan R, And Friedrich G. Barth. Strains in the exoskeleton of spiders. Journal of Comparative Physiology A, 1985, 157, 115–147.

    Article  Google Scholar 

  39. Wirkner, Christian S, Stefan R. Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics, 2010, 26, 143–167.

    Article  Google Scholar 

  40. Huckstorf K, Kosok G, Seyfarth E-A, Wirkner C S. The hemolymph vascular system in Cupiennius salei (Araneae: Ctenidae). Zoologischer Anzeiger — A Journal of Comparative Zoology, 2013, 252, 76–87.

    Article  Google Scholar 

  41. Shultz J W. Muscular anatomy of the giant whipscorpion Mastigoproctus giganteus (Lucas) (Arachnida: Uropygi) and its evolutionary significance. Zoological Journal of the Linnean Society, 1993, 108, 335–365.

    Article  Google Scholar 

  42. Shultz J W. Evolution of locomotion in Arachnida: The hydraulic pressure pump of the giant whipscorpion, Mastigoproctus giganteus (Uropygi). Journal of Morphology, 1991, 210, 13–31.

    Article  Google Scholar 

  43. Whitehead W F, Rempel J G. A study of the musculature of the black widow spider, Latrodectus mactans (Fabr.). Canadian Journal of Zoology, 1959, 37, 831–870.

    Article  Google Scholar 

  44. Anderson J F, And K. N. The fluid pressure pumps of spiders (Chelicerata, Araneae). Zeitschrift für Morphologie der Tiere, 1975, 81, 257–277.

    Article  Google Scholar 

  45. Wilson R S. Some comments on the hydrostatic system of spiders (Chelicerata, Araneae). Zeitschrift für Morphologie der Tiere, 1970, 68, 308–322.

    Article  Google Scholar 

  46. Paul R J, Bihlmayer S, Colmorgen M, Zahler S. The open circulatory system of spiders (Eurypelma californicum, Pholcus phalangioides): A survey of functional morphology and physiology. Physiological Zoology, 1994, 67, 1360–1382.

    Article  Google Scholar 

  47. Wirkner C S, Katarina H. The circulatory system of spiders. In: Nentwig W (ed), Spider Ecophysiology, Springer Berlin Heidelberg, Germany, 2013, 15–27.

    Chapter  Google Scholar 

  48. Wilson R S, And Bullock J. The hydraulic interaction between prosoma and opisthosoma in Amaurobius ferox (Chelicerata, Araneae). Zeitschrift für Morphologie der Tiere, 1973, 74, 221–230.

    Article  Google Scholar 

  49. Geiler H, Beier R. Nachweis glatter muskulatur im opisthosoma von Araneus diadematus clerck. Zoologischer Anzeiger, 1971, 187, 434–438.

    Google Scholar 

  50. Robinson G L, Paim U. Opisthosomal musculature of female Araneus diadematus (Araneae: Argiopidae). The Canadian Entomologist, 1969, 101, 337–352.

    Article  Google Scholar 

  51. Stewart D M, Arthur W M. Blood pressure in the tarantula, Dugesiella hentzi. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1974, 88, 141–172.

    Article  Google Scholar 

  52. Nentwig W. The species referred to as Eurypelma californicum (Theraphosidae) in more than 100 publications is likely to be Aphonopelma hentzi. Journal of Arachnology, 2012, 40, 128–130.

    Article  Google Scholar 

  53. Paul R J, Bihlmayer S. Circulatory physiology of a tarantula (Eurypelma-californicum). Zoology-Analysis of Complex Systems, 1994, 98, 69–81.

    Google Scholar 

  54. Mcmahon B R, Louis E B. The crustacean open circulatory system: A reexamination. Physiological Zoology, 1990, 63, 35–71.

    Article  Google Scholar 

  55. Barth F G. Spider mechanoreceptors. Current Opinion in Neurobiology, 2004, 14, 415–422.

    Article  Google Scholar 

  56. Schaber C F, Gorb S N, Barth F G. Force transformation in spider strain sensors: White light interferometry. Journal of the Royal Society, Interface, 2012, 9, 1254–1264.

    Article  Google Scholar 

  57. Fratzl P, Barth F G. Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462, 442–448.

    Article  Google Scholar 

  58. Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L F, Park B, Suh K-Y, Kim T, Choi M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516, 222–226.

    Article  Google Scholar 

  59. Weihmann T, Gunther M, Blickhan R. Hydraulic leg extension is not necessarily the main drive in large spiders. The Journal of experimental biology, 2012, 215, 578–583.

    Article  Google Scholar 

  60. Sensenig A T. Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids. Journal of Experimental Biology, 2003, 206, 771–784.

    Article  Google Scholar 

  61. Sensenig A T, Shultz J W. Elastic energy storage in the pedipalpal joints of scorpions and sun-spiders (Arachnida, Scorpiones, Solifugae). Journal of Arachnology, 2004, 32, 1–10.

    Article  Google Scholar 

  62. Rubin S, Young M H, Wright J C, Whitaker D L, Ahn A N. Exceptional running and turning performance in a mite. The Journal of Experimental Biology, 2016, 219, 676–685.

    Article  Google Scholar 

  63. Heethoff M, Koerner L. Small but powerful: The oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. The Journal of Experimental Biology, 2007, 210, 3036–3042.

    Article  Google Scholar 

  64. Schmelzle S, Norton R A, Heethoff M. Mechanics of the ptychoid defense mechanism in Ptyctima (Acari, Oribatida): One problem, two solutions. Zoologischer Anzeiger — A Journal of Comparative Zoology, 2015, 254, 27–40.

    Article  Google Scholar 

  65. Wauthy G, Leponce M, Banai N, Sylin G, Lions J C. The backward jump of a box moss mite. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2235–2242.

    Article  Google Scholar 

  66. Miller G. Behavioral neuroscience uncaged. Science, 2004, 306, 432–434.

    Article  Google Scholar 

  67. Politi Y, Priewasser M, Pippel E, Zaslansky P, Hartmann, J, Siegel S, Li C H, Barth F G, Fratzl P. A spider’s fang: How to design an injection needle using chitin-based composite material. Advanced Functional Materials, 2012, 22, 2519–2528.

    Article  Google Scholar 

  68. Siebert T, Weihmann T, Rode C, Blickhan R. Cupiennius salei: Biomechanical properties of the tibia-metatarsus joint and its flexing muscles. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2010, 180, 199–209.

    Article  Google Scholar 

  69. Weihmann T. Crawling at high speeds: Steady level locomotion in the spider cupiennius salei-global kinematics and implications for centre of mass dynamics. PloS One, 2013, 8, e65788.

    Article  Google Scholar 

  70. Dippenaar-Schoeman A, Jocque R. African Spiders: An Identification Manual. ARC-Plant Protection Research Institute, Biosystematics Division, National Collection of Arachnida, Pretoria, South Africa, 1997.

    Google Scholar 

  71. Wood H M, Parkinson D Y, Griswold C E, Gillespie R G, Elias D O. Repeated evolution of power-amplified predatory strikes in trap-jaw spiders. Current Biology, 2016, 26, 1057–1061.

    Article  Google Scholar 

  72. Thery M, Casas J. Predator and prey views of spider camouflage. Nature, 2002, 415, 133.

    Article  Google Scholar 

  73. Tanaka Y, Hisada M. The hydraulic mechanism of the predatory strike in dragonfly larvae. Journal of Experimental Biology, 1980, 88, 1–20.

    Google Scholar 

  74. Casey T M. Energetics of caterpillar locomotion: Biomechanical constraints of a hydraulic skeleton. Science, 1991, 252, 112–114.

    Article  Google Scholar 

  75. Simon M A, Woods W A, Jr., Serebrenik Y V, Simon S M, van Griethuijsen L I, Socha J J, Lee W K, Trimmer B A. Visceral-locomotory pistoning in crawling caterpillars. Current Biology, 2010, 20, 1458–1463.

    Article  Google Scholar 

  76. Brackenbury J. Fast locomotion in caterpillars. Journal of insect Physiology, 1999, 45, 525–533.

    Article  Google Scholar 

  77. Trueman E R, Brown A C. Locomotion, pedal retraction and extension, and the hydraulic systems of Bullia (Gastropoda: Nassaridae). Journal of Zoology, 1976, 178, 365–384.

    Article  Google Scholar 

  78. Dale B. Blood pressure and its hydraulic functions in Helix pomatia L. Journal of Experimental Biology, 1973, 59, 477–490.

    Google Scholar 

  79. Dorgan K M, D’amelio C, Lindsay S M. Strategies of burrowing in soft muddy sediments by diverse polychaetes. Invertebrate Biology, 2016, 135, 287–301.

    Article  Google Scholar 

  80. Che J, Dorgan K M. Mechanics and kinematics of backward burrowing by the polychaete Cirriformia moorei. The Journal of Experimental Biology, 2010, 213, 4272–4277.

    Article  Google Scholar 

  81. Vincent J F V. Deployable structures in nature: Potential for biomimicking. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214, 1–10.

    Google Scholar 

  82. Norekian T P, Satterlie R A. Co-activation of antagonistic motoneurons as a mechanism of high-speed hydraulic inflation of prey capture appendages in the pteropod mollusk Clione limacina. The Biological Bulletin, 1993, 185, 240–247.

    Article  Google Scholar 

  83. Salisbury S M, Martin G G, Kier W, Schulz J R. Venom kinematics during prey capture in Conus: the biomechanics of a rapid injection system. The Journal of Experimental Biology, 2010, 213, 673–682.

    Article  Google Scholar 

  84. Triantafyllou M S, Weymouth G D, Miao J. Biomimetic survival hydrodynamics and flow sensing. Annual Review of Fluid Mechanics, 2016, 48, 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  85. Zeidberg L D, Robison B H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12948–12950.

    Article  Google Scholar 

  86. Rosenbluth J, Szent-Gyorgyi A G, Thompson J T. The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids. The Journal of Experimental Biology, 2010, 213, 2430–2443.

    Article  Google Scholar 

  87. Anderson E J, Grosenbaugh M A. Jet flow in steadily swimming adult squid. The Journal of Experimental Biology, 2005, 208, 1125–1146.

    Article  Google Scholar 

  88. Bartol I K, Krueger P S, Thompson J T, Stewart W J. Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology, 2008, 48, 720–733.

    Article  Google Scholar 

  89. Thompson J T, Kier W M. Ontogeny of mantle musculature and implications for jet locomotion in oval squid Sepioteuthis lessoniana. The Journal of Experimental Biology, 2006, 209, 433–443.

    Article  Google Scholar 

  90. Staaf D J, Gilly W F, Denny M W. Aperture effects in squid jet propulsion. The Journal of Experimental Biology, 2014, 217, 1588–1600.

    Article  Google Scholar 

  91. Cox K. The unique ecology of Lembeh Strait, Indonesia. Journal Fisheries, 2017, 42, 519–525.

    Article  Google Scholar 

  92. Wethey D S, Woodin S A. Infaunal hydraulics generate porewater pressure signals. The Biological Bulletin, 2005, 209, 139–145.

    Article  Google Scholar 

  93. Trueman E R. The dynamics of burrowing in Ensis (Bivalvia). Proceedings of the Royal Society B: Biological Sciences, 1967, 166, 459–476.

    Google Scholar 

  94. Trueman E R, Brown A C. Dynamics of burrowing and pedal extension in Donax serra (Mollusca: Bivalvia). Journal of Zoology, 1985, 207, 345–355.

    Article  Google Scholar 

  95. Ansell A D, Trueman E R. Burrowing in Mercenaria mercenaria (L.)(Bivalvia, Veneridae). Journal of Experimental Biology, 1967, 46, 105–115.

    Google Scholar 

  96. Dorgan K M. The biomechanics of burrowing and boring. The Journal of Experimental Biology, 2015, 218, 176–183.

    Article  Google Scholar 

  97. Skierczynski B A, Wilson R J A, Kristan W B, Skalak R. A model of the hydrostatic skeleton of the leech. Journal of Theoretical Biology, 1996, 181, 329–342.

    Article  Google Scholar 

  98. Vaidyanathan R, Chiel H J, Quinn R D. A hydrostatic robot for marine applications. Robotics and Autonomous Systems, 2000, 30, 103–113.

    Article  Google Scholar 

  99. Dorgan K M. Environmental constraints on the mechanics of crawling and burrowing using hydrostatic skeletons. Experimental Mechanics, 2010, 50, 1373–1381.

    Article  Google Scholar 

  100. Trimmer B A, Lin H T. Bone-free: Soft mechanics for adaptive locomotion. Integrative and Comparative Biology, 2014, 54, 1122–1135.

    Article  Google Scholar 

  101. Sturzenbaum S R, Hockner M, Panneerselvam A, Levitt J. Biosynthesis of luminescent quantum dots in an earthworm. Nature Nanotechnology, 2013, 8, 57–60.

    Article  Google Scholar 

  102. Quillin K J. Ontogenetic scaling of hydrostatic skeletons: Geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris. The Journal of Experimental Biology, 1998, 201, 1871–1883.

    Google Scholar 

  103. Quillin K J. Kinematic scaling of locomotion by hydrostatic animals: Ontogeny of peristaltic crawling by the earthworm lumbricus terrestris. The Journal of Experimental Biology, 1999, 202, 661–674.

    Google Scholar 

  104. Yekutieli Y, Flash T, Hochner B. Biomechanics: Hydroskeletal. In Larry R ed., Encyclopedia of Neuroscience, 2009, 189–200.

  105. Hamilton G. The secret lives of jellyfish. Nature, 2016, 531, 432–434.

    Article  Google Scholar 

  106. Baumgarten S, Simakov O, Esherick L Y, Liew Y J, Lehnert E M, Michell C T, Li Y, Hambleton E A, Guse A, Oates M E, Gough J, Weis V M, Aranda M A, Pringle J R, Voolstra C R. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11893–11898.

    Article  Google Scholar 

  107. Nawroth J C, Lee H, Feinberg A W, Ripplinger C M, McCain M L, Grosberg A, Dabiri J O, Parker K K. A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 2012, 30, 792–797.

    Article  Google Scholar 

  108. Gemmell B J, Colin S P, Costello J H, Dabiri J O. Suction-based propulsion as a basis for efficient animal swimming. Nature Communications, 2015, 6, 8790.

    Article  Google Scholar 

  109. Park S G, Chang C B, Huang W X, Sung H J. Simulation of swimming oblate jellyfish with a paddling-based locomotion. Journal of Fluid Mechanics, 2014, 748, 731–755.

    Article  Google Scholar 

  110. Gemmell B J, Costello J H, Colin S, Stewart C. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17904–17909.

    Article  Google Scholar 

  111. Park S G, Kim B, Lee J, Huang W X, Sung H J. Dynamics of prolate jellyfish with a jet-based locomotion. Journal of Fluids and Structures, 2015, 57, 331–343.

    Article  Google Scholar 

  112. Santos R, Haesaerts D, Jangoux M, Flammang P. Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). Journal of Morphology, 2005, 263, 259–269.

    Article  Google Scholar 

  113. Hennebert E. Adhesion mechanisms developed by sea stars: A review of the ultrastructure and composition of tube feet and their secretion. Biological Adhesive Systems, 2010, 99–109.

  114. Mccurley R S, Kier W M. The functional morphology of starfish tube feet: The role of a crossed-fiber helical array in movement. The Biological Bulletin, 1995, 188, 197–209.

    Article  Google Scholar 

  115. Santo R, Gorb S, Jamar V, Flammang P. Adhesion of echinoderm tube feet to rough surfaces. The Journal of Experimental Biology, 2005, 208, 2555–2567.

    Article  Google Scholar 

  116. Hennebert E, Haesaerts D, Dubois P, Plammang P. Evaluation of the different forces brought into play during tube foot activities in sea stars. The Journal of Experimental Biology, 2010, 213, 1162–1174.

    Article  Google Scholar 

  117. Santor R, Barreto A, Franco C, Coelho A V. Mapping sea urchins tube feet proteome — A unique hydraulic mechanosensory adhesive organ. Journal of Proteomics, 2013, 79, 100–113.

    Article  Google Scholar 

  118. Bone Q, Trueman E R. Jet propulsion in salps. Journal of Zoology, 1983, 201, 481–506.

    Article  Google Scholar 

  119. Sutherland K R, Madin L P. Comparative jet wake structure and swimming performance of salps. The Journal of Experimental Biology, 2010, 213, 2967–2975.

    Article  Google Scholar 

  120. Madin L P. Aspects of jet propulsion in salps. Canadian Journal of Zoology, 1990, 68, 765–777.

    Article  Google Scholar 

  121. Polygerinos P, Correll N, Morin S A, Mosadegh B, Onal C D, Petersen K, Cianchetti M, Tolley M T, Shepherd R F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sSensing, control, and applications in human-robot interaction. Advanced Engineering Materials, 2017, 19, 1700016.

    Article  Google Scholar 

  122. Wehner M, Truby R L, Fitzgerald D J, Mosadegh B, Whitesides G M, Lewis J A, Wood R J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451–455.

    Article  Google Scholar 

  123. Hines L, Petersen K, Lum G Z, Sitti M. Soft actuators for small-scale robotics. Advanced Materials, 2017, 29, 1603483.

    Article  Google Scholar 

  124. Bryant M, Meller M A, Garcia E. Variable recruitment fluidic artificial muscles: Modeling and experiments. Smart Materials and Structures, 2014, 23, 074009.

    Article  Google Scholar 

  125. Desbiens A B, Bigue J L, Véronneau C, Masson P, Iagnemma K, Plante J. On the potential of Hydrogen-powered hydraulic pumps for soft robotics. Soft Robotics, 2017, 4, 367–378.

    Article  Google Scholar 

  126. Hines L, Petersen K, Sitti M. Inflated soft actuators with reversible stable deformations. Advanced Materials, 2016, 28, 3690–3696.

    Article  Google Scholar 

  127. Katzschmann R K, De Maille A, Dorhout D L, Rus D. Cyclic hydraulic actuation for soft robotic devices. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016, 3048–3055.

    Chapter  Google Scholar 

  128. Tiwari R, Kothera C S, Philen M, Moses C. Hydraulic artificial muscles. Journal of Intelligent Material Systems and Structures, 2012, 23, 301–312.

    Article  Google Scholar 

  129. Mirvakili S M, Hunter I W. Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials, 2018, 30, 1704407.

    Article  Google Scholar 

  130. Sridar S, Majeika C J, Schaffer P, Bowers M, Ueda S, Barth A J, Sorrells J L, Wu J T, Hunt T R, Popovic M. Hydro muscle-A novel soft fluidic actuator. IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, 4014–4021.

    Chapter  Google Scholar 

  131. Farrow N, Correll N. A soft pneumatic actuator that can sense grasp and touch. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, 2317–2323.

    Chapter  Google Scholar 

  132. Polygerinos P, Wang Z, Overvelde J T B, Galloway K C. Modeling of soft fiber-reinforced bending actuators. IEEE Transactions on Robotics, 2015, 31, 778–789.

    Article  Google Scholar 

  133. Wang H, Ma J G, Ren Z Y, Gong Z Y, Hao Y F, Wang T M, Wen L. Fiber-reinforced soft robotic anthropomorphic finger. International Conference on Robotics and Automation Engineering (ICRAE), Jeju, South Korea, 2016, 1–5.

    Google Scholar 

  134. Wirekoh J, Park Y-L. Design of flat pneumatic artificial muscles. Smart Materials and Structures, 2017, 26, 035009.

    Article  Google Scholar 

  135. Robertson M A, Sadeghi H, Florez J M, Paik J. Soft pneumatic actuator fascicles for high force and reliability. Soft Robotics, 2017, 4, 23–32.

    Article  Google Scholar 

  136. Connolly F, Polygerinos P, Walsh C J, Bertoldi K. Mechanical programming of soft actuators by varying fiber angle. Soft Robotics, 2015, 2, 26–32.

    Article  Google Scholar 

  137. Al-Fahaam H, Davis S, Nefti-Meziani S. The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robotics and Autonomous Systems, 2018, 99, 63–74.

    Article  Google Scholar 

  138. Tarvainen T, Yu W. Pneumatic multi-pocket elastomer actuators for metacarpophalangeal joint flexion and abduction-adduction. Actuators, 2017, 6, 27.

    Article  Google Scholar 

  139. Bishop-Moser J, Kota S. Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Robotics and Automation Society, 2015, 31, 536–545.

    Google Scholar 

  140. Onal C D, Chen X, Whitesides G M, Rus D. Soft mobile robots with on-board chemical pressure generation. Springer Tracts in Advanced Robotics, 2017, 100, 525–540.

    Article  Google Scholar 

  141. Gamus B, Salem L, Ben-Haim E, Gat A D, Or Y. Interaction between inertia, viscosity, and elasticity in soft robotic actuator with fluidic network. IEEE Robotics and Automation Society, 2018, 34, 81–90.

    Google Scholar 

  142. Kelly D A. Penises as variable-volume hydrostatic skeletons. Annals of the New York Academy of Sciences, 2007, 1101, 453–463.

    Article  Google Scholar 

  143. Loepfe M, Schumacher C M, Burri C H, Stark W J. Contrast agent iIncorporation into silicone enables real-time flow-structure analysis of mammalian vein-inspired soft pumps. Advanced Functional Materials, 2015, 25, 2129–2137.

    Article  Google Scholar 

  144. Roche E T, Wohlfarth R, Overvelde J T, Vasilyev N V, Pigula F A, Mooney D J, Bertoldi K, Walsh C J. A bioinspired soft actuated material. Advanced Materials, 2014, 26, 1200–1206.

    Article  Google Scholar 

  145. Wu W, Deconinck A, Lewis J A. Omnidirectional printing of 3D microvascular networks. Advanced Materials, 2011, 23, H178–H183.

    Article  Google Scholar 

  146. Kolesky D B, Truby R L, Gladman A S, Busbee T A, Homan K A, Lewis J A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 2014, 26, 3124–3130.

    Article  Google Scholar 

  147. Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14, 23–36.

    Article  Google Scholar 

  148. Ortiz C, Mary C B. Bioinspired structural materials. Science, 2008, 319, 1053–1054.

    Article  Google Scholar 

  149. Acome E, Mitchell S K, Morrissey T G, Emmett M B. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 2018, 359, 61–65.

    Article  Google Scholar 

  150. Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X H. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 2017, 8, 14230.

    Article  Google Scholar 

  151. Gerboni G, Diodato A, Ciuti G, et al. Feedback Control of Soft Robot Actuators via Commercial Flex Bend Sensors. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1881–1888.

    Article  Google Scholar 

  152. Li S, Zhao H C, Shepherd R F. Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bulletin, 2017, 42, 138–142.

    Article  Google Scholar 

  153. Han D, Gu H R, Kim J W, Yokota S. A bio-inspired 3D-printed hybrid finger with integrated ECF (electro-conjugate fluid) micropumps. Sensors and Actuators A: Physical, 2017, 257, 47–57.

    Article  Google Scholar 

  154. Felt W, Chin K Y, Remy C D. Contraction sensing with smart braid McKibben muscles. IEEE/ASME transactions on mechatronics: A joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, 2016, 21, 1201–1209.

    Article  Google Scholar 

  155. Elgeneidy K, Lohse N, Jackson M. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors — A data-driven approach. Mechatronics, 2017, doi: https://doi.org/10.1016/j.mechatronics.2017.10.005.

  156. Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Biomimetic 4D printing. Nature Materials, 2016, 15, 413–418.

    Article  Google Scholar 

  157. Khoo Z X, Teoh J E M, Liu Y, Chua C K, Yang S F, An J, Leong K F, Yeong W Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10, 103–122.

    Article  Google Scholar 

  158. Murphy S V, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology, 2014, 32, 773–785.

    Article  Google Scholar 

  159. Niiyama R, Sun X, Sung C, An B, Rus D, Kim S. Pouch motors: Printable soft actuators integrated with computational design. Soft Robotics, 2015, 2, 59–70.

    Article  Google Scholar 

  160. Robinson S S, O’brien K W, Zhao H C, Peele B N, Larson C M, Mac Murray B C, Van Meerbeek I M, Dunham S N, Shepherd R F. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechanics Letters, 2015, 5, 47–53.

    Article  Google Scholar 

  161. Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nature Communications, 2017, 8, 596.

    Article  Google Scholar 

  162. Yang D, Verma M S, So J-H, Mosadegh B, Keplinger C, Lee B, Khashai F, Lossner E, Suo Z, Whitesides G M. Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 2016, 1, 1600055.

    Google Scholar 

  163. Kang T Y, Kaminaga H, Nakamura Y. A Robot hand driven by hydraulic cluster actuators. 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 2014, 39–44.

    Google Scholar 

  164. Vincent J F V. Stealing ideas from nature. In: Pellegrino S ed., International Centre for Mechanical Sciences, Deployable structures Springer Vienna, 2001, 51–58.

    Google Scholar 

  165. Hu N, Feng P, Dai G. The gift from nature: Bio-inspired strategy for developing innovative bridges. Journal of Bionic Engineering, 2013, 10, 405–414.

    Article  Google Scholar 

  166. Ouyang X P, Ding S, Fan B Q, Li P Y, Yang H Y. Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics, 2016, 38, 68–75.

    Article  Google Scholar 

  167. Maccurdy R, Katzschmann R, Kim Y, Rus D. Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids. IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, 3878–3885.

    Chapter  Google Scholar 

  168. Berring J, Kianfar K, Lira C, Menon C, Scarpa F. A smart hydraulic joint for future implementation in robotic structures. Robotica, 2010, 28, 1045–1056.

    Article  Google Scholar 

  169. Lira C, Menon C, Kianfar K, Scarpa F, Mani M. Mining smartness from the hydraulic system of spiders: A bioinspired actuator for advanced applications. Advances in Science and Technology, 2008, 58, 114–119.

    Article  Google Scholar 

  170. Menon C, Lira C. Active articulation for future space applications inspired by the hydraulic system of spiders. Bioinspiration & Biomimetics, 2006, 1, 52–61.

    Article  Google Scholar 

  171. Schulz S, Pylatiuk C, Reischl M, Martin J, Mikut R, Bretthauer G. A hydraulically driven multifunctional prosthetic hand. Robotica, 2005, 23, 293–299.

    Article  Google Scholar 

  172. Landkammer S, Schneider D, Winter F, Hess P, Hornfeck R. Static modeling of antagonistic pneumatic actuator for robotic applications. IEEE on Electronics, Control, Measurement, Signals and Their Application to Mechatronics, 2015, 1–6.

  173. Nemiroski A, Shevchenko Y Y, Stokes A A, Unal B, Ainla A, Albert S, Compton G, Macdonald E, Schwab Y, Zellhofer C, Whitesides G M. Arthrobots. Soft Robotics, 2017, 4, 183–190.

    Article  Google Scholar 

  174. Binder M D, Hirokawa N, Windhorst U. Encyclopedia of Neuroscience, 1st ed, Springer Heidelberg, Berlin, 2009.

    Book  Google Scholar 

  175. Giorgio-Serchi F, Arienti A, Laschi C. Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling. The International Journal of Robotics Research, 2016, 35, 1308–1329.

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Natural Science Foundation of China (Grant No. 51675219), the National Natural Science Foundation of China (Ggrant No. 91848204), the Pre-Research Foundation of Equipment Development Department and Ministry of Education of China (Grant No. 6141A02022614), and the China Postdoctoral Science Foundation (Grant No. 2016M590261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Ren, L. et al. A Review of Biological Fluid Power Systems and Their Potential Bionic Applications. J Bionic Eng 16, 367–399 (2019). https://doi.org/10.1007/s42235-019-0031-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0031-6

Keywords

Navigation