Skip to main content
Log in

Flame-retardant and fire-warning cotton composite fabrics based on the thermoelectric effect of polypyyrole doped with P-toluenesulfonic acid

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Recently, many efforts have been devoted to studying early-stage fire-warning materials (EFWMs). Among those, thermoelectric effect-based EFWM (TE-EFWMs) are particularly attractive because they are self-powered and intrinsically sensitive to temperature. However, none of the reported fire-warning response times of TE-EFWMs can reach 1.0 s. Herein, flame-retardant composite cotton fabrics with speedy and repeatable fire warning function (denoted as CF-TE-FR) were constructed by in-situ polymerized polypyrrole (PPy) doped with P-toluenesulfonic acid (PTSA) and a flame retardant composite layer composed of sodium montmorillonite (MMT) and ammonium polyphosphate (APP). The fire warning performance of CF-TE-FR was effectively enhanced through PTSA doping, and the fire warning response time was shortened with an increasing concentration of PTSA. The fire warning indicator could be triggered as fast as 0.8 s when the molar ratio of PTSA to pyrrole monomer reached 1:3. Meanwhile, all the CF-TE-FR samples could release the fire-warning signals repeatedly. This work proposes a facile approach to the fabrication and application of organic thermoelectric polymer-based materials with ultrafast fire-warning response, repeatable fire-warning capability, and excellent flame retardancy.

Graphical abstract

Flame-retardant cotton fabrics based on the thermoelectric effect of polypyrrole demonstrate speedy and repeatable fire warning function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Liu BW, Zhao HB, Wang YZ (2021) Advanced flame-retardant methods for polymeric materials. Adv Mater 2107905–21079341. https://doi.org/10.1002/adma.202107905

  2. Xie HL, Lai XJ, Li HQ et al (2021) Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J Colloid Interface Sci 602:756–766. https://doi.org/10.1016/j.jcis.2021.06.054

    Article  Google Scholar 

  3. Cao CF, Yu B, Huang J et al (2022) Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano 16:20865–20876. https://doi.org/10.1021/acsnano.2c08368

    Article  Google Scholar 

  4. Wang Y, Liu J, Zhao Y et al (2022) Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos B 247:110348. https://doi.org/10.1016/j.compositesb.2022.110348

    Article  Google Scholar 

  5. Li X, Vazquez-Lopez A, Del Rio S, Saeza J et al (2022) Recent advances on early-stage fire-warning systems: mechanism, performance, and perspective. Nano-Micro Lett 14:197–229. https://doi.org/10.1007/s40820-022-00938-x

    Article  Google Scholar 

  6. Feng Y, Joo J, Han G et al (2023) The Effects of Fe Addition for Enhanced Thermoelectric Performance in p-type CuAlO2. Eng Sci 22:822. https://doi.org/10.30919/es8d822

  7. Han G, Sun Y, Feng Y et al (2021) Machine learning regression guided thermoelectric materials discovery; a review. ES Mater Manuf 14:20–35. https://doi.org/10.30919/esmm5f451

  8. He Z, Yang M, Wang L et al (2021) Concentrated photovoltaic thermoelectric hybrid system: an experimental and machine learning study. Eng Sci 15:47–56. https://doi.org/10.30919/es8d440

  9. Min G (2022) Prospective photovoltaic-thermoelectric hybrid system. ES Mater Manuf 16:13–18. https://doi.org/10.30919/esmm5e606

  10. Wang Z, Yang M, Jiang Q et al (2022) Improving the thermoelectric properties of 2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene-based organic semiconductors by isotropic strain. ES Mater Manuf 16:66–77. https://doi.org/10.30919/esmm5f489

  11. Li T, Wei H, Zhang Y et al (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

  12. Lv L-Y, Cao C-F, Qu Y-X et al (2022) Smart fire-warning materials and sensors: Design principle, performances, and applications. Mater Sci Eng R Rep 150:100690–1006731. https://doi.org/10.1016/j.mser.2022.100690

    Article  Google Scholar 

  13. Liu C, Xu K, Shi Y et al (2022) Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Mater Today Phys 22:100607. https://doi.org/10.1016/j.mtphys.2022.100607

    Article  Google Scholar 

  14. Zeng Q, Wang B, Lai X et al (2023) Multifunctional MXene-coated cotton fabric with enhanced thermopower for smart fire protection. Compos Part A 164. https://doi.org/10.1016/j.compositesa.2022.107305

  15. Liu L, Feng J, Xue Y et al (2022) 2D MXenes for fire retardancy and fire‐warning applications: promises and prospects. Adv Funct Mater 33. https://doi.org/10.1002/adfm.202212124

  16. Russ B, Glaudell A, Urban JJ et al (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1. https://doi.org/10.1038/natrevmats.2016.50

  17. Zou T, Zhang D, Xu T et al (2023) Smart fire-safety cotton fabric with fire-warning capability via dual working mechanisms. Cellulose 6015–6030. https://doi.org/10.1007/s10570-023-05227-3

  18. Deng L, Liu Y, Zhang Y et al (2023) Organic thermoelectric materials: niche harvester of thermal energy. Adv Funct Mater 33. https://doi.org/10.1002/adfm.202210770

  19. Tang X, Liu T, Li H et al (2017) Notably enhanced thermoelectric properties of lamellar polypyrrole by doping with β-naphthalene sulfonic acid. RSC Adv 7:20192–20200. https://doi.org/10.1039/C7RA02302B

    Article  Google Scholar 

  20. Wang Y, Yang L, Shi XL et al (2019) Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 31:1807916–1180763. https://doi.org/10.1002/adma.201807916

    Article  Google Scholar 

  21. Huang W, Zeng S, Liu J et al (2015) Bi-axially oriented polystyrene/montmorillonite nanocomposite films. RSC Adv 5:58191–58198. https://doi.org/10.1039/C5RA09598K

    Article  Google Scholar 

  22. Sun L, Boo WJ, Liu J et al (2007) Preparation of intercalating agent-free epoxy/clay nanocomposites. Polym Eng Sci 47:1708–1714. https://doi.org/10.1002/pen.20864

    Article  Google Scholar 

  23. Wang Q, Wu C, LaChance AM et al (2022) Interfacial polarization suppression of P (VDF-HFP) film through 2D montmorillonite nanosheets coating. Prog Org Coat 172. https://doi.org/10.1016/j.porgcoat.2022.107119

  24. LaChance AM, Hou Z, Farooqui MM et al (2022) Doctor-blade-assisted casting for forming thin composite coatings of montmorillonite and poly(vinyl alcohol). Ind Eng Chem Res 61:3766–3774. https://doi.org/10.1021/acs.iecr.1c04381

    Article  Google Scholar 

  25. LaChance AM, Hou Z, Farooqui MM et al (2022) Spin coating for forming thin composite coatings of montmorillonite and poly (vinyl alcohol). Ind Eng Chem Res 61:4168–4177. https://doi.org/10.1021/acs.iecr.1c04382

    Article  Google Scholar 

  26. Zhou Y, LaChance AM, Smith AT et al (2019) Strategic design of clay-based multifunctional materials: from natural minerals to nanostructured membranes. Adv Funct Mater 29:1807611. https://doi.org/10.1002/adfm.201807611

    Article  Google Scholar 

  27. Zhang D, Williams BL, Becher EM et al (2018) Flame retardant and hydrophobic cotton fabrics from intumescent coatings. Adv Compos Hybrid Mater 1:177–184. https://doi.org/10.1007/s42114-017-0006-1

    Article  Google Scholar 

  28. Zhang D, Williams BL, Santos VH et al (2020) Self-assembled intumescent flame retardant coatings: influence of ph on the flammability of cotton fabrics. Eng Sci 12:106–112. https://doi.org/10.30919/es8d1134

  29. Zhang D, Williams BL, Shrestha SB et al (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

  30. Zhang DQ, Williams BL, Liu JJ et al (2021) An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics. Cellulose 28:10277–10289. https://doi.org/10.1007/s10570-021-04177-y

    Article  Google Scholar 

  31. Chavez SE, Ding H, Nam S et al (2021) One-step coassembled nanocoatings on paper for potential packaging applications. ES Mater Manuf 15:72–77. https://doi.org/10.30919/esmm5f510

  32. LaChance AM, Hou Z, Farooqui MM et al (2022) Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings. Adv Compos Hybrid Mater 5:1067–1077. https://doi.org/10.1007/s42114-022-00421-6

    Article  Google Scholar 

  33. Liu J, Chavez SE, Ding H et al (2022) Ultra-transparent nanostructured coatings via flow-induced one-step coassembly. Nano Mater Sci 4:97–103. https://doi.org/10.1016/j.nanoms.2021.07.001

    Article  Google Scholar 

  34. Ren M, Wang Y, Liu J et al (2022) Enhancing corona resistance in Kapton with self-assembled two-dimensional montmorillonite nanocoatings. Mater Adv 3:3853–3861. https://doi.org/10.1039/D2MA00205A

    Article  Google Scholar 

  35. Wu C, LaChance AM, Baferani MA et al (2022) Scalable self-assembly interfacial engineering for high-temperature dielectric energy storage. Iscience 25. https://doi.org/10.1016/j.isci.2022.104601

  36. Xue Y, LaChance AM, Liu J et al (2023) Polyvinyl alcohol/α-zirconium phosphate nanocomposite coatings via facile one-step coassembly. Polymer 265:125580. https://doi.org/10.1016/j.polymer.2022.125580

    Article  Google Scholar 

  37. Zhang B, Liu J, Ren M et al (2021) Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2d nanoassembly coating. Adv Mater 33:2101374. https://doi.org/10.1002/adma.202101374

    Article  Google Scholar 

  38. Li Y, He G (1998) Effect of preparation conditions on the two doping structures of polypyrrole. Synth Met 94:127–129. https://doi.org/10.1016/S0379-6779(97)04158-1

    Article  Google Scholar 

  39. Park H, Kim JW, Hong SY et al (2018) Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv Funct Mater 28:1707013–1707024. https://doi.org/10.1002/adfm.201707013

    Article  Google Scholar 

  40. Hebeish A, Farag S, Sharaf S et al (2016) Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydr Polym 151:96–102. https://doi.org/10.1016/j.carbpol.2016.05.054

    Article  Google Scholar 

  41. Ma Z, Zhang Z, Zhao F et al (2022) A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv Compos Hybrid Mater 5:2817–2833. https://doi.org/10.1007/s42114-022-00464-9

    Article  Google Scholar 

  42. Stephen C, Shivamurthy B, Mohan M et al (2022) Low velocity impact behavior of fabric reinforced polymer composites; a review. Eng Sci 18:75–97. https://doi.org/10.30919/es8d670

  43. Wang Y, Gong YS, Lin NP et al (2022) Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci 606:941–952. https://doi.org/10.1016/j.jcis.2021.08.075

    Article  Google Scholar 

  44. Jia YL, Lu Y, Zhang GX et al (2017) Facile synthesis of an eco-friendly nitrogen-phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. J Mater Chem A 5:9970–9981. https://doi.org/10.1039/c7ta01106g

    Article  Google Scholar 

  45. McGrail BT, Sehirlioglu A, Pentzer E (2015) Polymer composites for thermoelectric applications. Angew Chem Int Ed 54:1710–1723. https://doi.org/10.1002/anie.201408431

    Article  Google Scholar 

  46. Xu S, Shi X-L, Dargusch M et al (2021) Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Prog Mater Sci 121:100840–100906. https://doi.org/10.1016/j.pmatsci.2021.100840

  47. Prunet G, Pawula F, Fleury G et al (2021) A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Mater Today Phys 18. https://doi.org/10.1016/j.mtphys.2021.100402

  48. Ding L, Yu Z-D, Wang X-Y et al (2023) Polymer semiconductors: synthesis, processing, and applications. Chem Rev 123:7421–7497. https://doi.org/10.1021/acs.chemrev.2c00696

    Article  Google Scholar 

  49. Lu Y, Wang JY, Pei J (2019) Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater 31:6412–6423. https://doi.org/10.1021/acs.chemmater.9b01422

    Article  Google Scholar 

  50. Scaccabarozzi AD, Basu A, Anies F et al (2022) Doping approaches for organic semiconductors. Chem Rev 122:4420–4492. https://doi.org/10.1021/acs.chemrev.1c00581

    Article  Google Scholar 

  51. Ding FC, Liu JJ, Zeng SS et al (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3. https://doi.org/10.1126/sciadv.1701212

  52. Williams BL, Ding H, Hou Z et al (2021) Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Adv Compos Hybrid Mater 4:662–669. https://doi.org/10.1007/s42114-021-00299-w

    Article  Google Scholar 

  53. Wang B, Lai X, Li H et al (2021) Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl Mater Interfaces 13:23020–23029. https://doi.org/10.1021/acsami.1c05222

    Article  Google Scholar 

  54. Zeng QT, Wang BL, Lai XJ et al (2023) Multifunctional MXene-coated cotton fabric with enhanced thermopower for smart fire protection. Compos Part A Appl Sci Manuf 164. https://doi.org/10.1016/j.compositesa.2022.107305

  55. Xie HL, Li KQ, Nian JH et al (2023) A flexible thermoelectric nanocoating with layered bridged heterostructure for sensitive thermosensation and high fire safety. Compos Part A Appl Sci Manuf 166. https://doi.org/10.1016/j.compositesa.2022.107385

Download references

Funding

D. Z. acknowledges the financial support of the Natural Science Foundation of Guangdong Province of China (2021A1515010289) and the Opening Project of the Key Laboratory of Polymer Processing Engineering (KFKT2005, South China University of Technology).

Author information

Authors and Affiliations

Authors

Contributions

Tao Zou: conceptualization, methodology, investigation, formal analysis, visualization, writing-original draft; Dongqiao Zhang: conceptualization, methodology, data curation, writing-review & editing; Kuangyu Shen: investigation, formal analysis; Zhenduo Huang: investigation, formal analysis; Tao Xu: supervision, writing-review & editing; Xaiohong Peng: supervision, writing-review & editing; He Zhang: methodology, writing-review & editing; Yanliang Du: conceptualization, review & editing; Luyi Sun: conceptualization, methodology, supervision, writing-review & editing.

Corresponding authors

Correspondence to Dongqiao Zhang, Tao Xu or Luyi Sun.

Ethics declarations

Competing interests

The authors declare that we do not have any conflict of interest in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. S1, fire-warning test video of CF-TE1:3-FR80%. S2, fire-warning test video of CF-TE1:20-FR80%.

Supplementary file1 (MP4 242501 KB)

Supplementary file2 (MP4 137684 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, T., Zhang, D., Shen, K. et al. Flame-retardant and fire-warning cotton composite fabrics based on the thermoelectric effect of polypyyrole doped with P-toluenesulfonic acid. Adv Compos Hybrid Mater 6, 200 (2023). https://doi.org/10.1007/s42114-023-00781-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00781-7

Keywords

Navigation