Skip to main content
Log in

Microstructure-based high-quality factor terahertz metamaterial bio-detection sensor

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The sensitivity, accuracy, and stability of terahertz biodetection functional devices still need to be improved. A metamaterial-based terahertz biodetection sensor was to be designed and fabricated to meet this need. The sensor uses lithography and magnetron sputtering processes to prepare copper combination square ring microstructures. The sensor interacts with the incident terahertz wave to generate a magnetic dipole resonance, including a resonant peak with 98.9% absorption at the resonant frequency of 0.4696 THz. When the analyte’s refractive index increased from 1.0 to 2.0, the resonance peak of the sensor obviously redshifted, and the absorption of the resonance peak almost exceeded 99%. Meanwhile, the sensitivity of the sensor can reach 78.6 GHz/RIU (refractive index unit, RIU), Q (quality factor) is up to 55.3, and FOM (figure of merit, FOM) is up to 9.81. In addition, the quadruple rotation structure unit makes the sensor insensitive to wide incidence angles and polarization. The designed sensor has excellent resonance characteristics and can realize the detection and identification of biomolecules with different refractive indices. It also provides new ideas for designing terahertz band bio-detection sensors and has critical applications in medical diagnosis and real-time monitoring.

Graphical Abstract

A terahertz metamaterial biodetection sensor was designed and prepared by introducing a quadruple rotationally symmetric microstructure. When the refractive index of the analyte injected into the sensor increases in the range of 1.0 to 2.0, the resonant peak of the sensor undergoes a significant redshift. Meanwhile, the sensitivity of the sensor can reach 78.6 GHz/RIU, the Q factor can reach 55.3, and the FOM can reach 9.81.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emaminejad H, Mir A, Farmani A (2021) Design and simulation of a novel tunable terahertz biosensor based on metamaterials for simultaneous monitoring of blood and urine components. Plasmonics 16(5):1537–1548. https://doi.org/10.1007/s11468-021-01399-5

    Article  CAS  Google Scholar 

  2. Wang Y, Wang Y, Hu F, Zeng L, Chen Z, Jiang M, Lin S, Guo W, Li D (2022) Surface-functionalized terahertz metamaterial biosensor used for the detection of exosomes in patients. Langmuir 38(12):3739–3747. https://doi.org/10.1021/acs.langmuir.1c03286

    Article  CAS  Google Scholar 

  3. Li Y, Chen X, Hu F, Li D, Teng H, Rong Q, Zhang W, Han J, Liang H (2019) Four resonators based high sensitive terahertz metamaterial biosensor used for measuring the concentration of protein. J Phys D Appl Phys 52(9):095105. https://doi.org/10.1088/1361-6463/aaf7e9

  4. Hou X, Chen X, Li T, Li Y, Tian Z, Wang M (2021) Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection. Optical Materials Express 11(7):2268–2277. https://doi.org/10.1364/ome.431339

    Article  CAS  Google Scholar 

  5. Wang G, Zhu F, Lang T, Liu J, Hong Z, Qin J (2021) All-metal terahertz metamaterial biosensor for protein detection. Nanoscale Res Lett 16(1):109. https://doi.org/10.1186/s11671-021-03566-3

    Article  CAS  Google Scholar 

  6. Fang W, Lv X, Ma Z, Liu J, Pei W, Geng Z (2022) A flexible terahertz metamaterial biosensor for cancer cell growth and migration detection (Basel) 13(4):631. https://doi.org/10.3390/mi13040631

    Article  Google Scholar 

  7. Yang M, Zhang Z, Liang L, Yan X, Wei D, Song X, Zhang H, Lu Y, Wang M, Yao J (2019) Sensitive detection of the concentrations for normal epithelial cells based on Fano resonance metamaterial biosensors in the terahertz range. Appl Opt 58(23):6268–6273. https://doi.org/10.1364/AO.58.006268

    Article  CAS  Google Scholar 

  8. Cao L, Jia S, Thomson MD, Meng F, Roskos HG (2022) Can a terahertz metamaterial sensor be improved by ultra-strong coupling with a high-Q photonic resonator? Opt Express 30(8):13659–13672. https://doi.org/10.1364/OE.456044

    Article  CAS  Google Scholar 

  9. Azab MY, Hameed MFO, Nasr AM, Obayya SSA (2021) Highly sensitive metamaterial biosensor for cancer early detection. IEEE Sens J 21(6):7748–7755. https://doi.org/10.1109/jsen.2021.3051075

    Article  CAS  Google Scholar 

  10. Liu J, Fan L, Su J, Yang S, Luo H, Shen X, Ding F (2022) Study on a terahertz biosensor based on graphene-metamaterial. Spectrochim Acta A Mol Biomol Spectrosc 280:121527. https://doi.org/10.1016/j.saa.2022.121527

  11. Yang K, Li J, Lamy de la Chapelle M, Huang G, Wang Y, Zhang J, Xu D, Yao J, Yang X, Fu W (2021) A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron 175:112874. https://doi.org/10.1016/j.bios.2020.112874

  12. Lin W, Huang S, Ren j (2020) Anomalous transient heat conduction in fractal metamaterials. ES Energy Environ 7:56–64. https://doi.org/10.30919/esee8c371

  13. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang MN, Hu GM, Zhu JF (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  14. Xie PT, Shi ZC, Feng M, Sun K, Liu Y, Yan KL, Liu CZ, Moussa TAA, Huang MN, Meng SW, Liang GM, Hou H, Fan RH, Guo ZH (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  15. Huang JP (2019) Thermal metamaterials make it possible to control the flow of heat at will-2. ES Energy Environ 6:1–3. https://doi.org/10.30919/esee8c379

  16. Tang M, Xia L, Wei D, Yan S, Zhang M, Yang Z, Wang H, Du C, Cui H L (2020) Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 228:117736.  https://doi.org/10.1016/j.saa.2019.117736

  17. Liu J (2020) High-sensitivity detection method for organochlorine pesticide residues based on loop-shaped absorber. Mater Chem Phys 242:122542. https://doi.org/10.1016/j.matchemphys.2019.122542

  18. Deng X, Shen Y, Liu B, Song Z, He X, Zhang Q, Ling D, Liu D, Wei D (2022) Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors (Basel) 12(6):408. https://doi.org/10.3390/bios12060408

  19. Keshavarz A, Vafapour Z (2019) Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens J 19(13):5161–5166. https://doi.org/10.1109/jsen.2019.2903731

    Article  CAS  Google Scholar 

  20. Li D, Lin S, Hu F, Chen Z, Zhang W, Han J (2020) Metamaterial terahertz sensor for measuring thermal-induced denaturation temperature of insulin. IEEE Sens J 20(4):1821–1828. https://doi.org/10.1109/jsen.2019.2949617

    Article  CAS  Google Scholar 

  21. Tang C, Yang J, Wang Y, Cheng J, Li X, Chang C, Hu J, Lü J (2021) Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids. Sens Actuators B Chem 329:129113. https://doi.org/10.1016/j.snb.2020.129113

  22. Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W (2021) Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron 185:113241.  https://doi.org/10.1016/j.bios.2021.113241

  23. Cao P, Wu Y, Wang Z, Li Y, Zhang J, Liu Q, Cheng L, Niu T (2020) Tunable dual-band ultrasensitive stereo metamaterial terahertz sensor. IEEE Access 8:219525–219533. https://doi.org/10.1109/access.2020.3039503

    Article  Google Scholar 

  24. Veeraselvam A, Mohammed GNA, Savarimuthu K (2021) A novel ultra-miniaturized highly sensitive refractive index-based terahertz biosensor. J Lightwave Technol 39(22):7281–7287. https://doi.org/10.1109/jlt.2021.3112529

    Article  CAS  Google Scholar 

  25. Xu W, Xie L, Zhu J, Tang L, Singh R, Wang C, Ma Y, Chen H-T, Ying Y (2019) Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon 141:247–252. https://doi.org/10.1016/j.carbon.2018.09.050

    Article  CAS  Google Scholar 

  26. Zhang R, Chen Q, Liu K, Chen Z, Li K, Zhang X, Xu J, Pickwell-MacPherson E (2019) Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples. IEEE Transactions on Terahertz Science and Technology 9(2):209–214. https://doi.org/10.1109/tthz.2019.2898390

    Article  CAS  Google Scholar 

  27. Liang W, Zuo J, Zhou Q, Zhang C (2022) Quantitative determination of glycerol concentration in aqueous glycerol solutions by metamaterial-based terahertz spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 270:120812. https://doi.org/10.1016/j.saa.2021.120812

  28. Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E (2021) Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed Opt Express 12(3):1559–1567. https://doi.org/10.1364/BOE.418859

    Article  Google Scholar 

  29. Niu Q, Zhang R, Yang Y (2022) High sensitivity and label-free detection of the SARS-CoV-2 S1 protein using a terahertz meta-biosensor. Front Phys 10:859924. https://doi.org/10.3389/fphy.2022.859924

  30. Keshavarz A, Vafapour Z (2019) Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens J 19(4):1519–1524. https://doi.org/10.1109/jsen.2018.2882363

    Article  CAS  Google Scholar 

  31. Fang W, Ma Z, Lv X, Liu J, Pei W, Geng Z (2022) Flexible terahertz metamaterial biosensor for label-free sensing of serum tumor marker modified on a non-metal area. Opt Express 30(10):16630–16643. https://doi.org/10.1364/oe.454647

  32. Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W (2021) Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens 6(5):1884–1890. https://doi.org/10.1021/acssensors.1c00174

    Article  CAS  Google Scholar 

  33. Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sens J 19(18):7993–7999. https://doi.org/10.1109/jsen.2019.2918214

    Article  CAS  Google Scholar 

  34. Ma A, Zhong R, Wu Z, Wang Y, Yang L, Liang Z, Fang Z, Liu S (2020) Ultrasensitive THz sensor based on centrosymmetric F-shaped metamaterial resonators. Front Phys 8:584639. https://doi.org/10.3389/fphy.2020.584639

  35. Wang Z, Geng Z, Fang W (2020) Exploring performance of THz metamaterial biosensor based on flexible thin-film. Opt Express 28(18):26370–26384. https://doi.org/10.1364/OE.402222

    Article  CAS  Google Scholar 

  36. Li D, Zeng L, Wang Y, Tang H-W, Lee WX, Chen Z, Zhang L, Zou Y, Xie D, Hu F (2022) Terahertz metamaterial biosensor for diagnosis of hepatocellular carcinoma at early stage. Appl Opt 61(16):4817–4822. https://doi.org/10.1364/ao.459489

    Article  CAS  Google Scholar 

  37. Lin S, Xu X, Hu F, Chen Z, Wang Y, Zhang L, Peng Z, Li D, Zeng L, Chen Y, Wang Z (2021) Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J Sel Top Quantum Electron 27(4):1–7. https://doi.org/10.1109/jstqe.2020.3038308

    Article  CAS  Google Scholar 

  38. Li D, Hu F, Zhang H, Chen Z, Huang G, Tang F, Lin S, Zou Y, Zhou Y (2021) Identification of early-stage cervical cancer tissue using metamaterial terahertz biosensor with two resonant absorption frequencies. IEEE J Sel Top Quantum Electron 27(4):1–7. https://doi.org/10.1109/jstqe.2021.3058163

    Article  CAS  Google Scholar 

  39. Jing H, Duan J, Wei Y, Hao J, Qu Z, Wang J, Zhang, B (2022) An ultra-broadband flexible polarization-insensitive microwave metamaterial absorber. Mater Res Express 9:025802. https://doi.org/10.1088/2053-1591/ac5484

  40. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

  41. Wu N, Du W, Hu Q, Vupputuri S, Jiang Q (2021) Recent development in fabrication of co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23. https://doi.org/10.30919/es8d1149

  42. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3 Pt.2):036617. https://doi.org/10.1103/PhysRevE.71.036617

  43. Wang H, Sivan VP, Mitchell A, Rosengarten G, Phelan P, Wang LP (2015) Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol Energy Mater Sol Cells 137:235–242. https://doi.org/10.1016/j.solmat.2015.02.019

    Article  CAS  Google Scholar 

  44. Guo Y, Liu H, Wang DD, El-Bahy ZM, Althakafy JT, Abo-Dief HM, Guo ZH, Xu BB, Liu CT, Shen CY (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res 15(8):6841–6850. https://doi.org/10.1007/s12274-022-4533-x

    Article  CAS  Google Scholar 

  45. Liu R, Cui TJ, Huang D, Zhao B, Smith DR (2007) Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys Rev E 76(2 Pt 2):026606. https://doi.org/10.1103/PhysRevE.76.026606

  46. Wang G, Wu T, Jia Y, Gao Y, Gao Y-C (2022) Switchable terahertz absorber from single broadband to triple-narrowband. Diam Relat Mater 130:0925–9635. https://doi.org/10.1016/j.diamond.2022.109460

  47. Jing H-H, Wei Y-Q, Kang J-F, Song C-W, Deng H, Duan J-P Qu Z, Wang J-Y, Zhang B-Z (2023) An optically transparent flexible metasurface absorber with broadband radar absorption and low infrared emissivity. J Phys D Appl Phys 56(11):115103. https://doi.org/10.1088/1361-6463/acbbda

  48. Guo J, Chen Z, Xu X, Li X, Liu H, Xi S, Abdul W, Wu Q, Zhang P, Xu B, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Advanced Composites and Hybrid Materials 5(3):1769–1777. https://doi.org/10.1007/s42114-022-00417-2

    Article  CAS  Google Scholar 

  49. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049

    Article  CAS  Google Scholar 

  50. Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K (2021) Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt Express 29(9):13563–13575. https://doi.org/10.1364/OE.423256

    Article  CAS  Google Scholar 

  51. Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H (2020) Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans Terahertz Sci Technol 10(6):599–605. https://doi.org/10.1109/TTHZ.2020.3010164

    Article  Google Scholar 

  52. Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y, Wang X (2020) A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application. Results Phys 16:103012. https://doi.org/10.1016/j.rinp.2020.103012

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52175555), the Top young and middle-aged innovative talents in Shanxi Colleges and universities, the Shanxi key research and development project (international cooperation) (No. 201803D421043), the fund for Shanxi “1331 Project” Key Subject Construction, the National Natural Science Foundation of China (innovation community) (No. 51821003), the Fundamental Research Program of Shanxi Province (No. 20210302123074), and the Fundamental Research Program of Shanxi Province (No.202203021212146).

Author information

Authors and Affiliations

Authors

Contributions

Zeng Qu and Jinfeng Kang prepared the main manuscript. Wei Li and Boyi Yao processed the data in Figs. 1, 2, and 3. Hao Deng and Yiqing Wei processed the data in Figs. 5, 6, 78 and S1. Huihui Jing, Xiaohong Li, Junping Duan, and Binzhen Zhang did the chip process and proofreading, and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Zeng Qu or Binzhen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Kang, J., Li, W. et al. Microstructure-based high-quality factor terahertz metamaterial bio-detection sensor. Adv Compos Hybrid Mater 6, 100 (2023). https://doi.org/10.1007/s42114-023-00679-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00679-4

Keywords

Navigation