Skip to main content

Advertisement

Log in

Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The introduction of high-permittivity inorganic ceramic materials into organic polymer-based dielectric materials can effectively increase the energy density of film capacitors. In this study, polydopamine (PDA) was coated on BaTiO3 (BT) nanoparticles through a condensation reaction to form a core–shell structure of BT@PDA. Then it is introduced into the polyvinylidene fluoride/polymethyl methacrylate (PVDF/PMMA) matrix, and the BT@PDA/PVDF-PMMA nanocomposite flexible energy storage films are prepared by the solution casting method. When BT@PDA is 5%, the breakdown strength of the nanocomposite film is 378 MV/m, and the maximum energy density is 11.15 J/cm3. Excellent comprehensive electrical properties are due to the enhanced interface coupling between the BT nanofiller and the PVDF macromolecular chain. The introduction of PMMA can suppress the increase in residual polarization. Utilizing the respective advantages of BT@PDA nanocomposite and PVDF-PMMA blending, while improving the breakdown strength and polarization difference, this work provides feasible strategy for improving the energy density and discharge efficiency of flexible PVDF-based films capacitors.

Graphical abstract

The energy density of the nanomaterials with 5% BT@PDA filler was 11.15 J/cm3 at 378 MV/m electric field intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater 5(2):1126–1136

    CAS  Google Scholar 

  2. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5(2):1537–1547

    CAS  Google Scholar 

  3. Yu J, Zhang Y, Guo Q, Hou H, Ma Y, Zhao Y (2022) Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater, in press. https://doi.org/10.1007/s42114-021-00403-0

    Article  Google Scholar 

  4. Zhao Z, Zhao R, Bai P, Du W, Guan R, Tie D, Naik N, Huang M, Guo Z (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloy Compd 902

    CAS  Google Scholar 

  5. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875

  6. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin Xu B, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14(1):118

  7. Xin TZ, Zhao YH, Mahjoub R, Jiang JX, Yadav A, Nomoto K, Niu RM, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu WQ, Liao XZ, Chen LQ, Hagihara K, Li XY, Ringer S, Ferry M (2021) Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci Adv 7(23):aebf3039

    Google Scholar 

  8. Chen L, Zhao Y, Li M, Li L, Hou L, Hou H (2021) Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater Sci Eng A 804:140793

    CAS  Google Scholar 

  9. Wang Z, He S, Nguyen V, Riley KE (2020) Ionic liquids as “green solvent and/or electrolyte” for energy interface. Eng Sci 11:3–18

    CAS  Google Scholar 

  10. Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin LW (2020) Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369(6499):81–84

    CAS  Google Scholar 

  11. Hu J, Zhang S, Tang B (2021) 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Stor Mater 34:260–281

    Google Scholar 

  12. Jiang Y, Zhang X, Shen Z, Li X, Yan J, Li BW, Nan CW (2020) Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles. Adv Func Mater 30(4):1906112

    CAS  Google Scholar 

  13. Peng Z, Jiang Q, Peng P, Li F-F (2021) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/NC for oxygen reduction reaction and Zn-air battery. Eng Sci 14(2):27–38

    CAS  Google Scholar 

  14. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14(9):2511

    CAS  Google Scholar 

  15. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13(20):5373

    CAS  Google Scholar 

  16. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg Chem Front 9(6):1115–1124

    CAS  Google Scholar 

  17. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407

    CAS  Google Scholar 

  18. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  19. Bhongale CJ, Chaudhari R (2021) All-organic solution processed solar cells based on terephthaladehyde self-assembled monolayer. Eng Sci 15:89–94

    CAS  Google Scholar 

  20. Shaikh AV, Sayyed SG, Naeem S, Mane RS (2020) Electrodeposition of n-CdSe/p-Cu2Se heterojunction solar cells. Eng Sci 13(2):79–86

    Google Scholar 

  21. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

  22. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials (Basel, Switzerland) 13(20):4622

    CAS  Google Scholar 

  23. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2021) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74

    Google Scholar 

  24. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  25. Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z, Pan D, Guo Z (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316

    CAS  Google Scholar 

  26. Li H, Zhou Y, Liu Y, Li L, Liu Y, Wang Q (2021) Dielectric polymers for high-temperature capacitive energy storage. Chem Soc Rev 50(11):6369–6400

    CAS  Google Scholar 

  27. Meng N, Ren X, Santagiuliana G, Ventura L, Zhang H, Wu J, Yan H, Reece MJ, Bilotti E (2019) Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 10(1):1–9

    Google Scholar 

  28. Chen Q, Shen Y, Zhang S, Zhang QM (2015) Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 45:433–458

    CAS  Google Scholar 

  29. Luo S, Yu J, Yu S, Sun R, Cao L, Liao WH, Wong CP (2019) Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 9(5):1803204

    Google Scholar 

  30. Jia Y, Pan Y, Wang C, Liu C, Shen C, Pan C, Guo Z, Liu X (2021) Flexible Ag Microparticle/MXene-Based film for energy harvesting. Nano-Micro Lett 13(1):201

  31. Rehman Su, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13(2):71–78

  32. Sun D, Yan J, Ma X, Lan M, Wang Z, Cui S, Yang J (2021) Tribological investigation of self-healing composites containing metal/polymer microcapsules. ES Mater Manuf 14:59–72

    Google Scholar 

  33. He L (2021) Improve thermal conductivity of polymer composites via conductive network. ES Mater Manuf 13:1–2

    Google Scholar 

  34. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65

    CAS  Google Scholar 

  35. Guo M, Jiang J, Shen Z, Lin Y, Nan C-W, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67

    CAS  Google Scholar 

  36. Kang D, Wang G, Huang Y, Jiang P, Huang X (2018) Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl Mater Interfaces 10(4):4077–4085

    CAS  Google Scholar 

  37. Li Z, Zhao Y, Li W, Song R, Zhang Y, Zhao W, Wang Z, Peng Y, Fei W (2021) Enhanced energy storage properties of amorphous BiFeO3/Al2O3 multilayers. J Market Res 11:1852–1858

    CAS  Google Scholar 

  38. Lin Y, Sun C, Zhan S, Zhang Y, Yang H, Yuan Q (2020) Two-dimensional sheet-like K0.5Na0.5NbO3 platelets and sandwich structure induced ultrahigh discharge efficiency in poly (vinylidenefluoride)-based composites. Compos Sci Technol 199:108368

    CAS  Google Scholar 

  39. Tang H, Lin Y, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2(4):469–476

    CAS  Google Scholar 

  40. Wang Y, Chen J, Li Y, Niu Y, Wang Q, Wang H (2019) Multilayered hierarchical polymer composites for high energydensity capacitors. J Mater Chem A 7(7):2965–2980

    CAS  Google Scholar 

  41. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H, Loye H (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733

    CAS  Google Scholar 

  42. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater 5(2):1090–1099

    CAS  Google Scholar 

  43. Si Y, Li J, Cui B, Tang D, Yang L, Murugadoss V, Maganti S, Huang M, Guo Z (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater 5(2):1180–1195

    CAS  Google Scholar 

  44. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115

    CAS  Google Scholar 

  45. Wang Z, Wang T, Wang C, Xiao Y, Jing P, Cui Y, Pu Y (2017) Poly (vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba (Fe0.5Ta0.5)O3, for high energy-storage density at low electric field. ACS Appl Mater Interfaces 9(34):29130–29139

    CAS  Google Scholar 

  46. Yao L, Pan Z, Zhai J, Zhang G, Liu Z, Liu Y (2018) High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Compos A Appl Sci Manuf 109:48–54

    CAS  Google Scholar 

  47. Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116(7):4260–4317

    Google Scholar 

  48. Zhang X, Jiang Y, Gao R, Li X, Shen Z, Li B-W, Zhang Q, Zhang S, Nan C-W (2021) Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. Sci China Mater 64(7):1642–1652

    CAS  Google Scholar 

  49. Chi Q, Zhou Y, Yin C, Zhang Y, Zhang C, Zhang T, Feng Y, Zhang Y, Chen Q (2019) A blended binary composite of poly (vinylidene fluoride) and poly (methyl methacrylate) exhibiting excellent energy storage performances. J Mater Chem C 7(45):14148–14158

    CAS  Google Scholar 

  50. Lin Y, Sun C, Zhan S, Zhang Y, Yuan Q (2020) Ultrahigh discharge efficiency and high energy density in sandwich structure K0.5Na0.5NbO3 nanofibers/poly (vinylidene fluoride) composites. Adv Mater Interfaces 7(9):2000033

    CAS  Google Scholar 

  51. Hu D, Miao L, Zhang Z, Li L, Wang Y, Cheng H, Sewvandi GA, Feng Q, Fan M, Zhao L (2018) One-dimensional piezoelectric BaTiO3 polycrystal of topochemical mesocrystal conversion from layered H2Ti4O9· H2O Single Crystal. Cryst Growth Des 18(12):7264–7274

    CAS  Google Scholar 

  52. Hao YN, Wang XH, O'Brien S, Lombardi J, Li LT (2015) Flexible BaTiO3 /PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density. J Mater Chem C 3(37):9740–9747

  53. Yang D, Kong X, Ni Y, Xu Y, Huang S, Shang G, Xue H, Guo W, Zhang L (2018) Enhancement of dielectric performance of polymer composites via constructing BaTiO3–poly (dopamine)–Ag nanoparticles through mussel-inspired surface functionalization. ACS Omega 3(10):14087–14096

    CAS  Google Scholar 

  54. Feng M, Chen M, Qiu J, He M, Huang Y, Lin J (2021) Improving dielectric properties of poly (arylene ether nitrile) composites by employing core-shell structured BaTiO3@ polydopamine and MoS2@ polydopamine interlinked with poly (ethylene imine) for high-temperature applications. J Alloy Compd 856

    CAS  Google Scholar 

  55. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W (2012) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly (vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22(16):8063–8068

    CAS  Google Scholar 

  56. Dai Y, Zhu X (2018) Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J Chem Eng 35(7):1570–1576

    CAS  Google Scholar 

  57. Zhou Y, Liu Q, Chen F, Li X, Sun S, Guo J, Zhao Y, Yang Y, Xu J (2021) Gradient dielectric constant sandwich-structured BaTiO3/PMMA nanocomposites with strengthened energy density and ultralow-energy loss. Ceram Int 47(4):5112–5122

    CAS  Google Scholar 

  58. Prateek BR, Siddiqui S, Garg A, Gupta RK (2019) Significantly enhanced energy density by tailoring the interface in hierarchically structured TiO2-BaTiO3-TiO2 nanofillers in PVDF-based thin-film polymer nanocomposites. ACS Appl Mater Interfaces 11(15):14329–14339

    CAS  Google Scholar 

  59. Pan Z, Yao L, Zhai J, Shen B, Wang H (2017) Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos Sci Technol 147:30–33

    CAS  Google Scholar 

  60. Zhang B, Chen X-M, Wu W-W, Khesro A, Liu P, Mao M, Song K, Sun R, Wang D (2022) Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem Eng J 136926

  61. Zhang R, Li L, Long S, Shen Y, Lou H, Wen F, Hong H, Wang G, Wu W (2021) Linear and ferroelectric effects of BaTiO3 particle size on the energy storage performance of composite films with different polymer matrices. Ceram Int 47(15):22155–22163

    CAS  Google Scholar 

  62. He L, Wang J, Yang Z, Zhu K, Deng C (2019) Dielectric and energy storage properties of PVDF/Nd-BaTiO3@ Al2O3 composite films. Funct Mater Lett 12(03):1950034

    Google Scholar 

  63. Yang Z, Wang J, Hu Y, Deng C, Zhu K, Qiu J (2020) Simultaneously improved dielectric constant and breakdown strength of PVDF/Nd-BaTiO3 fiber composite films via the surface modification and subtle filler content modulation. Compos A Appl Sci Manuf 128

    CAS  Google Scholar 

  64. Chen G, Lin X, Li J, Huang S, Cheng X (2020) Core-satellite ultra-small hybrid Ni@BT nanoparticles: a new route to enhanced energy storage capability of PVDF based nanocomposites. Appl Surf Sci 513

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (No. 21005003), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-091), the Scientific Research Program funded by the Department of Science and Technology of Shaanxi Province (No. 2019JQ-897), and Serving Local Special Scientific Research Project of Shaanxi Provincial Education Department (22JC004). This work was also supported by Taif University Researchers Supporting Project (number TURSP-2020/109), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qibin Yuan, Bin Cui or Dengwei Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2031 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, D., Hessien, M.M. et al. Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage. Adv Compos Hybrid Mater 5, 2106–2115 (2022). https://doi.org/10.1007/s42114-022-00552-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00552-w

Keywords

Navigation