Skip to main content

Advertisement

Log in

Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To address the problems of easy leakage and high flammability of phase change materials, a series of innovative leakage-proof phase change composites (PCCs) with excellent solar thermal conversion capability and superior flame retardancy have been successfully developed. Herein, two-dimensional layered MXene nanosheets with excellent solar-thermal conversion effect were first synthesized by etching MAX phase with lithium fluoride and hydrochloric acid solutions. MXene/polyimide (PI) aerogel was then prepared by freeze-drying and thermal imidization after MXene dispersions mixed with poly (amic acid). The MXene/PI aerogels were subsequently impregnated into polyethylene glycol (PEG) by vacuum impregnation to obtain new shape-stable MXene/PI@PEG phase change composites (MPPCCs). Among them, MPPCC-4 exhibits a very high PEG loading capacity (98.1%) and high enthalpy (167.9 J/g), and a relative enthalpy efficiency of 99.8%. When compared to PEG, MPPCC-4 has outstanding flame retardant properties, including a 26.2% lower peak heat release rate and an 11.6% lower total heat release rate. In conclusion, MPPCCs show considerable potential for application in solar energy utilization systems.

Graphical abstract

MXene/polyimide hybrid aerogel supported phase change composites show excellent solar thermal energy harvesting and flame-retardant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nazir H, Batool M, Bolivar Osorio FJ et al (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  CAS  Google Scholar 

  2. Xie Y, Li W, Huang H et al (2020) Bio-based Radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustainable Chem Eng 8:8448–8457. https://doi.org/10.1021/acssuschemeng.0c02959

    Article  CAS  Google Scholar 

  3. Huang J, Lyu S, Han H et al (2022) Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags. Energy. https://doi.org/10.1016/j.energy.2022.123962

    Article  Google Scholar 

  4. Pandey AK, Hossain MS, Tyagi VV et al (2018) Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew Sustain Energy Rev 82:281–323. https://doi.org/10.1016/j.rser.2017.09.043

    Article  Google Scholar 

  5. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742. https://doi.org/10.1016/j.rser.2017.10.002

    Article  CAS  Google Scholar 

  6. Du Y, Huang H, Hu X et al (2021) Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renewable Energy 171:1–10. https://doi.org/10.1016/j.renene.2021.02.077

    Article  CAS  Google Scholar 

  7. Sheng X, Dong D, Lu X et al (2020) MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos A Appl Sci Manuf 138:106067. https://doi.org/10.1016/j.compositesa.2020.106067

    Article  CAS  Google Scholar 

  8. Huang X, Chen X, Li A et al (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661. https://doi.org/10.1016/j.cej.2018.09.013

    Article  CAS  Google Scholar 

  9. Chen R, Yao R, Xia W, Zou R (2015) Electro/photo to heat conversion system based on polyurethane embedded graphite foam. Appl Energy 152:183–188. https://doi.org/10.1016/j.apenergy.2015.01.022

    Article  CAS  Google Scholar 

  10. Sun Z, Shi T, Wang Y et al (2022) Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Sol Energy Mater Sol Cells 236:111539. https://doi.org/10.1016/j.solmat.2021.111539

    Article  CAS  Google Scholar 

  11. Li X, Sheng M, Gong S et al (2022) Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem Eng J 430:132928. https://doi.org/10.1016/j.cej.2021.132928

    Article  CAS  Google Scholar 

  12. Zhou Y, Wang X, Liu X et al (2019) Polyurethane-based solid-solid phase change materials with halloysite nanotubes-hybrid graphene aerogels for efficient light- and electro-thermal conversion and storage. Carbon 142:558–566. https://doi.org/10.1016/j.carbon.2018.10.083

    Article  CAS  Google Scholar 

  13. Li G, Zhang X, Wang J, Fang J (2016) From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J Mater Chem A 4:17042–17049. https://doi.org/10.1039/C6TA07587H

    Article  CAS  Google Scholar 

  14. Wang L, Shi X, Zhang J et al (2020) Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Technol 52:119–126. https://doi.org/10.1016/j.jmst.2020.03.029

    Article  CAS  Google Scholar 

  15. Zhao Y, Liu F, Zhu K et al (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  16. Lu B, Zhang Y, Sun D, Jing X (2021) Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage. Renewable Energy 178:669–678. https://doi.org/10.1016/j.renene.2021.06.070

    Article  CAS  Google Scholar 

  17. Wu M, Li T, Wang P et al (2021) Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small. https://doi.org/10.1002/smll.202105647

    Article  Google Scholar 

  18. Hu X, Wu H, Lu X et al (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4:478–491. https://doi.org/10.1007/s42114-021-00300-6

    Article  CAS  Google Scholar 

  19. Han Y, Ruan K, Gu J (2022) Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res 15:4747–4755. https://doi.org/10.1007/s12274-022-4159-z

    Article  CAS  Google Scholar 

  20. Gong S, Li X, Sheng M et al (2021) High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl Mater Interfaces 13:47174–47184. https://doi.org/10.1021/acsami.1c15670

    Article  CAS  Google Scholar 

  21. Dong J, Cao L, Li Y et al (2020) Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos Sci Technol 196:108242. https://doi.org/10.1016/j.compscitech.2020.108242

    Article  CAS  Google Scholar 

  22. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  23. Yang L, Yang J, Tang L-S et al (2020) Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity. Energy Fuels 34:2471–2479. https://doi.org/10.1021/acs.energyfuels.9b04212

    Article  CAS  Google Scholar 

  24. Xu H, Yin X, Li X et al (2019) Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 11:10198–10207. https://doi.org/10.1021/acsami.8b21671

    Article  CAS  Google Scholar 

  25. Zhang Y, Yan Y, Qiu H et al (2022) A mini-review of MXene porous films: preparation, mechanism and application. J Mater Sci Technol 103:42–49. https://doi.org/10.1016/j.jmst.2021.08.001

    Article  Google Scholar 

  26. Zhang Y, Ma Z, Ruan K, Gu J (2022) Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res 15:5601–5609. https://doi.org/10.1007/s12274-022-4358-7

    Article  CAS  Google Scholar 

  27. Song P, Liu B, Qiu H et al (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos Commun 24:100653. https://doi.org/10.1016/j.coco.2021.100653

    Article  Google Scholar 

  28. Dong Y, Chertopalov S, Maleski K et al (2018) Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv Mater 30:1705714. https://doi.org/10.1002/adma.201705714

    Article  CAS  Google Scholar 

  29. Gong S, Sheng X, Li X et al (2022) A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv Funct Materials. https://doi.org/10.1002/adfm.202200570

    Article  Google Scholar 

  30. Xing C, Chen S, Liang X et al (2018) Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces 10:27631–27643. https://doi.org/10.1021/acsami.8b08314

    Article  CAS  Google Scholar 

  31. Fan X, Liu L, Jin X et al (2019) MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J Mater Chem A 7:14319–14327. https://doi.org/10.1039/C9TA03962G

    Article  CAS  Google Scholar 

  32. Du X, Qiu J, Deng S et al (2020) Ti3C2Tx@PDA-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity. ACS Sustainable Chem Eng 8:5799–5806. https://doi.org/10.1021/acssuschemeng.0c01582

    Article  CAS  Google Scholar 

  33. Xu D, Li Z, Li L, Wang J (2020) Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Func Mater 30:2000712. https://doi.org/10.1002/adfm.202000712

    Article  CAS  Google Scholar 

  34. Lu X, Huang H, Zhang X et al (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos B Eng 177:107372. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  35. Yu B, Yuen ACY, Xu X et al (2021) Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. J Hazard Mater 401:123342. https://doi.org/10.1016/j.jhazmat.2020.123342

    Article  CAS  Google Scholar 

  36. Luo Y, Xie Y, Jiang H et al (2021) Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem Eng J 420:130466. https://doi.org/10.1016/j.cej.2021.130466

    Article  CAS  Google Scholar 

  37. Wang L, Ma Z, Zhang Y et al (2022) Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4:200–210. https://doi.org/10.1002/cey2.174

    Article  CAS  Google Scholar 

  38. Huang S, Wang L, Li Y et al (2021) Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J Appl Polym Sci 138:50649. https://doi.org/10.1002/app.50649

    Article  CAS  Google Scholar 

  39. Zhang Z, Wang X, Zu G et al (2019) Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite aerogel prepared via stepwise chemical liquid deposition. Mater Des 183:108096. https://doi.org/10.1016/j.matdes.2019.108096

    Article  CAS  Google Scholar 

  40. Chen L, Xu Z, Wang F et al (2020) A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength. Compos Commun 20:100355. https://doi.org/10.1016/j.coco.2020.05.001

    Article  Google Scholar 

  41. Lin P, Xie J, He Y et al (2020) MXene aerogel-based phase change materials toward solar energy conversion. Sol Energy Mater Sol Cells 206:110229. https://doi.org/10.1016/j.solmat.2019.110229

    Article  CAS  Google Scholar 

  42. Rasool K, Mahmoud KA, Johnson DJ et al (2017) Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep 7:1598. https://doi.org/10.1038/s41598-017-01714-3

    Article  CAS  Google Scholar 

  43. Shahzad F, Iqbal A, Zaidi SA et al (2019) Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem 79:338–344. https://doi.org/10.1016/j.jiec.2019.03.061

    Article  CAS  Google Scholar 

  44. Wang N-N, Wang H, Wang Y-Y et al (2019) Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl Mater Interfaces 11:40512–40523. https://doi.org/10.1021/acsami.9b14265

    Article  CAS  Google Scholar 

  45. He X, Li S, Shen R et al (2022) A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00392-0

    Article  Google Scholar 

  46. Qin Y, Peng Q, Ding Y et al (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941. https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  Google Scholar 

  47. He L, Wang H, Yang F, Zhu H (2018) Preparation and properties of polyethylene glycol/unsaturated polyester resin/graphene nanoplates composites as form-stable phase change materials. Thermochim Acta 665:43–52. https://doi.org/10.1016/j.tca.2018.04.012

    Article  CAS  Google Scholar 

  48. Liu J, Zhang H-B, Xie X et al (2018) Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14:1802479. https://doi.org/10.1002/smll.201802479

    Article  CAS  Google Scholar 

  49. Dai Y, Wu X, Liu Z et al (2020) Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos B Eng 200:108263. https://doi.org/10.1016/j.compositesb.2020.108263

    Article  CAS  Google Scholar 

  50. Liang B, Lu X, Li R et al (2019) Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage. Sol Energy Mater Sol Cells 200:110037. https://doi.org/10.1016/j.solmat.2019.110037

    Article  CAS  Google Scholar 

  51. Lu X, Liang B, Sheng X et al (2020) Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage. Sol Energy Mater Sol Cells 208:110391. https://doi.org/10.1016/j.solmat.2019.110391

    Article  CAS  Google Scholar 

  52. Wu B, Jiang Y, Wang Y et al (2018) Study on a PEG/epoxy shape-stabilized phase change material: preparation, thermal properties and thermal storage performance. Int J Heat Mass Transf 126:1134–1142. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.153

    Article  CAS  Google Scholar 

  53. Zhao Y, Min X, Huang Z et al (2018) Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build 158:1049–1062. https://doi.org/10.1016/j.enbuild.2017.10.078

    Article  Google Scholar 

  54. Zahir MdH, Irshad K, Aziz MdA et al (2019) Shape-stabilized phase change material for solar thermal energy storage: CaO containing MgCO3 mixed with polyethylene glycol. Energy Fuels 33:12041–12051. https://doi.org/10.1021/acs.energyfuels.9b02885

    Article  CAS  Google Scholar 

  55. Qian T, Zhu S, Wang H, Fan B (2019) Comparative study of carbon nanoparticles and single-walled carbon nanotube for light-heat conversion and thermal conductivity enhancement of the multifunctional PEG/diatomite composite phase change material. ACS Appl Mater Interfaces 11:29698–29707. https://doi.org/10.1021/acsami.9b04349

    Article  CAS  Google Scholar 

  56. Yang J, Qi G-Q, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702. https://doi.org/10.1016/j.carbon.2016.01.063

    Article  CAS  Google Scholar 

  57. Huang H, Dong D, Li W et al (2020) Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chin J Chem Eng 28:1981–1993. https://doi.org/10.1016/j.cjche.2020.04.014

    Article  CAS  Google Scholar 

  58. Mao M, Yu K-X, Cao C-F et al (2022) Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem Eng J 427:131615. https://doi.org/10.1016/j.cej.2021.131615

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. U20A20299 and 52003111). X. S. received support from the Research Fund Program of Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials (Grant No. LHG-2020–0004). Y. C. was supported by the Guangdong Special Support Program (Grant No. 2017TX04N371). J. H. received support from the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, (Grant No. KFKT2001). The authors also received financial support from Taif University Researchers Supporting Project number (TURSP-2020/158), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jintao Huang or Xinxin Sheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Weng, M., Mahmoud, M.H.H. et al. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5, 1253–1267 (2022). https://doi.org/10.1007/s42114-022-00504-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00504-4

Keywords

Navigation