Skip to main content

Advertisement

Log in

Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The composites of polylactic acid/glycidyl methacrylate of grafted ethylene–vinyl acetate copolymer/ethylene–vinyl acetate copolymer/carbon nanotubes (PLA/EVA-g-GMA/EVA/CNTs) were prepared by melt-blended. The effects of CNTs on the interfacial morphological evolution and dielectric properties of the PLA/EVA-g-GMA/EVA composites were investigated. The introduction of CNTs reduced the reaction efficiency of epoxy groups in EVA-g-GMA with terminal hydroxyl and terminal carboxyl groups of the PLA, which resulted in a decrease in the mechanical properties of the materials slightly. In addition, the introduction of CNTs as a solid filler which limited the movement of PLA segment thus caused the PLA crystal to grow slowly, which reduced the crystallization ability of the PLA, but improved the thermal stability of the composite material. Most importantly, the introduction of CNTs obviously improved the dielectric properties of the composites. Only 1% CNTs need to be added, and the dielectric constant of composites was increased from 5.81 to 11.08; at the same time, the tensile strength and elongation at break can reach 42.7 MPa and 70.5%, respectively. The material has both electrical properties and good balance of stiffness and toughness. This work offers an innovative methodology for facilely and massively creating high-performance multi-component PLA composites which can expand the application of PLA-based biodegradable materials in micron storage capacitors, integrated circuits, and other electronic fields.

Graphical abstract

EVA-g-GMA regulates the interface of PLA/EVA/CNTs nanocomposites and endows nanocomposites with excellent mechanical and dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci 57(4):660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  2. Su Y, Zhou M, Sui G, Lan J, Zhang H, Yang X (2020) Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss. Chem Eng J 394:124910. https://doi.org/10.1016/j.cej.2020.124910

    Article  CAS  Google Scholar 

  3. Yuan JK, Yao SH (2016) Dielectric constant of polymer composites and the routes to high-k or low-k nanocomposite materials. Polymer Nanocomposites 1:3–28. https://doi.org/10.1007/978-3-319-28238-1

  4. Shen Y, Zhang X, Li M, Lin Y, Nan CW (2017) Polymer nanocomposite dielectrics for electrical energy storage. Natl Sci Rev 4(1):23–25. https://doi.org/10.1093/nsr/nww066

    Article  CAS  Google Scholar 

  5. Yu J, Zhang YM, Guo QW, Hou H, Ma Y, Zhao YH (2022) Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater 1–9. https://doi.org/10.1007/s42114-021-00403-0

  6. Shi L, Yang R, Lu S, Jia K, Xiao C, Lu T, Wang TJ, Wei W, Tan H (2018) Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Mater 10(8):821–826. https://doi.org/10.1038/s41427-018-0077-7

    Article  CAS  Google Scholar 

  7. Wu S, Li WP, Lin MR, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang QM (2013) Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv Mater 25(12):1734–1738. https://doi.org/10.1002/adma.201204072

    Article  CAS  Google Scholar 

  8. Su Y, Ren Y, Chen GX, Li Q (2016) Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes. Polymer 100:179–187. https://doi.org/10.1016/j.polymer.2016.08.043

    Article  CAS  Google Scholar 

  9. Qiao Y, Islam MS, Han K, Leonhardt E, Zhang JY, Wang Q, Ploehn HJ, Tang CB (2013) Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv Func Mater 23(45):5638–5646. https://doi.org/10.1002/adfm.201300736

    Article  CAS  Google Scholar 

  10. Zhang M, Zhang L, Zhu M, Wang YG, Li NW, Zhang ZJ, Chen Q, An LN, Lin YH, Nang CW (2016) Controlled functionalization of poly (4-methyl-1-pentene) films for high energy storage applications. J Mater Chem A 4(13):4797–4807. https://doi.org/10.1039/C5TA09949H

    Article  CAS  Google Scholar 

  11. Qiao Y, Yin X, Zhu T, Li H, Tang C (2018) Dielectric polymers with novel chemistry, compositions and architectures. Prog Polym Sci 80:153–162. https://doi.org/10.1016/j.progpolymsci.2018.01.003

    Article  CAS  Google Scholar 

  12. Zhao ZY, Zhao RX, Bai PK, Du WB, Guan RG, Tie D, Naik N, Huang MN, Guo ZH (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloy Compd 902:163484. https://doi.org/10.1016/j.jallcom.2021.163484

    Article  CAS  Google Scholar 

  13. Zhao YL, Liu F, Zhu KJ, Maganti S, Zhao ZY, Bai PK (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 1–11. https://doi.org/10.1007/s42114-022-00430-5

  14. Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai1 J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115(13):5515–5521. https://doi.org/10.1021/jp1117163

  15. Ameli A, Wang S, Kazemi Y, Park CB, Pötschke P (2015) A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy 15:54–65. https://doi.org/10.1016/j.nanoen.2015.04.004

    Article  CAS  Google Scholar 

  16. Uyor UO, Popoola AP, Popoola O, Aigbodion VS (2018) Energy storage and loss capacity of graphene-reinforced poly (vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv Polym Technol 37(8):2838–2858. https://doi.org/10.1002/adv.21956

    Article  CAS  Google Scholar 

  17. Alkan Ü, Kılıç M, Karabul Y, Çağlar M, İçelli O, Güven Özdemir Z (2018) X-ray irradiated LDPE/PP blends with high mechanical and dielectric performance. J Appl Polym Sci 135(31):46571. https://doi.org/10.1002/app.46571

    Article  CAS  Google Scholar 

  18. Chi X, Liu W, Li S, Zhang X (2019) The effect of humidity on dielectric properties of PP-based nano-dielectric. Materials 12(9):1378. https://doi.org/10.3390/ma12091378

    Article  CAS  Google Scholar 

  19. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater 1–14. https://doi.org/10.1007/s42114-022-00435-0

  20. Yu Z, Yan Z, Zhang F et al (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

    Article  CAS  Google Scholar 

  21. Si YY, Li JN, Cui B, Tang DJ, Yang L, Murugadoss V, Maganti S, Huang MN, Guo ZH (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater 1–16. https://doi.org/10.1007/s42114-022-00446-x

  22. Spinelli G, Kotsilkova R, Ivanov E, Georgiev V, Ivanova R, Naddeo C, Romano V (2020) Dielectric spectroscopy and thermal properties of poly (lactic) acid reinforced with carbon-based particles: experimental study and design theory. Polymers 12(10):2414. https://doi.org/10.3390/polym12102414

    Article  CAS  Google Scholar 

  23. Wu W, Liu T, Zhang D et al (2019) Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Compos A Appl Sci Manuf 127:105650. https://doi.org/10.1016/j.compositesa.2019.105650

  24. An L, Boggs SA, Calame JP (2008) Energy storage in polymer films with high dielectric constant fillers. IEEE Electr Insul Mag 24(3):5–10. https://doi.org/10.1109/MEI.2008.4591430

    Article  Google Scholar 

  25. Dang ZM, Wang L, Yin YI, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857. https://doi.org/10.1002/adma.200600703

    Article  CAS  Google Scholar 

  26. Ameli A, Nofar M, Park CB, Pötschke P, Rizvi G (2014) Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 71:206–217. https://doi.org/10.1016/j.carbon.2014.01.031

    Article  CAS  Google Scholar 

  27. Ma Y, Xie XB, Yang WY, Yu ZP, Sun XQ, Zhang YP, Yang XY, Kimura H, Hou CX, Guo ZH, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924. https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  28. Gao SL, Zhao XH, Fu Q, Zhang TC, Zhu J, Hou FH, Ni J, Zhu CJ, Li TT, Wang YL, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang MN, Guo ZH (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  29. Dang ZM, Zheng MS, Zha JW (2016) 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12(13):1688–1701. https://doi.org/10.1002/smll.201503193

    Article  CAS  Google Scholar 

  30. Wang P, Zhou YY, Hu XH, Wang F, Chen JL, Xu P, Ding YS (2020) Improved mechanical and dielectric properties of PLA/EMA-GMA nanocomposites based on ionic liquids and MWCNTs. Compos Sci Technol 200:108347. https://doi.org/10.1016/j.compscitech.2020.108347

  31. Kim JY, Kim T, Suk JW, Chou H, Jang JH, Lee JH, Kholmanov IN, Akinwande DJ, Ruoff RS (2014) Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler. Small 10(16):3405–3411. https://doi.org/10.1002/smll.201400363

    Article  CAS  Google Scholar 

  32. Jiang MJ, Dang ZM, Bozlar M, Miomandre F, Bai J (2009) Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites. J Appl Phys 106(8):084902. https://doi.org/10.1063/1.3238306

  33. Wu N, Zhao BB, Liu JY, Li YL, Chen YB, Chen L, Wang M, Guo ZH (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  34. Luyt AS, Gasmi S (2016) Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci 51(9):4670–4681. https://doi.org/10.1007/s10853-016-9784-z

    Article  CAS  Google Scholar 

  35. Messin T, Marais S, Follain N, Guinault A, Gaucher V, Delpouve N, Sollogoub C (2020) Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances. J Membr Sci 598:117777. https://doi.org/10.1016/j.memsci.2019.117777

  36. Xia M, Shi K, Zhou M, Shen Y, Wang T (2019) Effects of chain extender and uniaxial stretching on the properties of PLA/PPC/mica composites. Polym Adv Technol 30(9):2436–2446. https://doi.org/10.1002/pat.4691

    Article  CAS  Google Scholar 

  37. Sangeetha VH, Valapa RB, Nayak SK, Varghese TO (2018) Investigation on the influence of EVA content on the mechanical and thermal characteristics of poly (lactic acid) blends. J Polym Environ 26(1):1–14. https://doi.org/10.1007/s10924-016-0906-0

    Article  CAS  Google Scholar 

  38. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater 1–11. https://doi.org/10.1007/s42114-022-00450-1

  39. Ma P, Xu P, Zhai Y, Dong W, Zhang Y, Chen M (2015) Biobased poly (lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: morphology evolution, superior properties, and partial degradability. ACS Sustain Chem Eng 3(9):2211–2219. https://doi.org/10.1021/acssuschemeng.5b00462

    Article  CAS  Google Scholar 

  40. Li Y, Liu L, Shi Y, Xiang F, Huang T, Wang Y, Zhou Z (2011) Morphology, rheological, crystallization behavior, and mechanical properties of poly (l-lactide)/ethylene-co-vinyl acetate blends with different VA contents. J Appl Polym Sci 121(5):2688–2698. https://doi.org/10.1002/app.33581

    Article  CAS  Google Scholar 

  41. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polymer J 48(1):146–154. https://doi.org/10.1016/j.eurpolymj.2011.10.015

    Article  CAS  Google Scholar 

  42. Wang X, Mi J, Wang J, Zhou H, Wang X (2018) Multiple actions of poly (ethylene octene) grafted with glycidyl methacrylate on the performance of poly (lactic acid). RSC Adv 8(60):34418–34427. https://doi.org/10.1039/C8RA07510G

    Article  CAS  Google Scholar 

  43. Paran SMR, Naderi G, Babakhani A (2018) An experimental study of the effect of CNTs on the mechanical properties of CNTs/NR/EPDM nanocomposite. Polym Compos 39(11):4071–4079. https://doi.org/10.1002/pc.24467

    Article  CAS  Google Scholar 

  44. Jing XY, Li YC, Zhu JH, Chang, L Maganti S, Naik N, Xu BB, Murugadoss M, Huang M, Guo ZH (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater 1–10. https://doi.org/10.1007/s42114-022-00438-x

  45. Chaiwutthinan P, Chauyjuljit S, Thipkham N, Kowalski CP, Boonmahitthisud A (2019) Poly (lactic acid)/ethylene vinyl acetate copolymer blend composites with wood flour and wollastonite: physical properties, morphology, and biodegradability. J Vinyl Add Tech 25(4):313–327. https://doi.org/10.1002/vnl.21697

    Article  CAS  Google Scholar 

  46. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Testing 68:34–38. https://doi.org/10.1016/j.polymertesting.2018.03.044

    Article  CAS  Google Scholar 

  47. Mat Desa MSZ, Hassan A, Arsad A, Arjmandi R, Mohammad NNB (2016) Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly (lactic acid)–multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 133(48). https://doi.org/10.1002/app.44344

  48. Xie Q, Bao J, Shan G, Bao Y, Pan P (2019) Fractional crystallization kinetics and formation of metastable β-form homocrystals in poly (l-lactic acid)/poly (d-lactic acid) racemic blends induced by precedingly formed stereocomplexes. Macromolecules 52(12):4655–4665. https://doi.org/10.1021/acs.macromol.9b00644

    Article  CAS  Google Scholar 

  49. Behera K, Sivanjineyulu V, Chang YH, Chiu FC (2018) Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polym Degrad Stab 154:248–260. https://doi.org/10.1016/j.polymdegradstab.2018.06.010

    Article  CAS  Google Scholar 

  50. Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH (2016) Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: correlation with microstructure and thermal properties. Compos B Eng 86:273–284. https://doi.org/10.1016/j.compositesb.2015.09.064

    Article  CAS  Google Scholar 

  51. Aigbodion VS (2021) Explicit microstructure and electrical conductivity of epoxy/carbon nanotube and green silver nanoparticle enhanced hybrid dielectric composites. Nanocomposites 7(1):35–43. https://doi.org/10.1080/20550324.2020.1868690

    Article  CAS  Google Scholar 

  52. Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem Mater 22(4):1567–1578. https://doi.org/10.1021/cm902852h

    Article  CAS  Google Scholar 

  53. Luo X, Yang G, Schubert DW (2022) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Mater 5(1):250–262. https://doi.org/10.1007/s42114-021-00332-y

    Article  CAS  Google Scholar 

  54. Wang Y, Wang P, Du Z, Liu C, Shen C, Wang Y (2022) Electromagnetic interference shielding enhancement of poly (lactic acid)-based carbonaceous nanocomposites by poly (ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater 5(1):209–219. https://doi.org/10.1007/s42114-021-00320-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51903002), Major science and technology projects of Anhui Province (202103a05020031, 201903a05020027), Anhui Jianzhu University PhD Startup Fund (2019QDZ22) and University Collaborative Innovation Project of Anhui province (GXXT-2019-017), Hefei Key Technology Major R&D Projects (No. J2019G19), Wuhu Key Technology Major R&D Projects (No. 2020yf14), Research Fund for Postdoctoral Researchers in Anhui Province (2020B413), Taif University Researchers Supporting Project number (TURSP-2020/243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Song, T., Abo-Dief, H.M. et al. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater 5, 1100–1110 (2022). https://doi.org/10.1007/s42114-022-00489-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00489-0

Keywords

Navigation