Skip to main content
Log in

Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Magnetic starch microspheres (MSMs) and methyl methacrylate magnetic starch microspheres (MMA-MSMs) were prepared via an inverse emulsion polymerization by mechanically activated cassava starch as a crude material, and branched-chain polyethyleneimine(PEI) was cross-linked to the surface of the two microspheres by glutaraldehyde to prepare polyethyleneimine-modified magnetic starch microspheres (PEI/MSMs) and polyethyleneimine-modified methyl methacrylate magnetic starch microspheres (PEI/MMA-MSMs). The results showed that Fe3O4 nanoparticles were encapsulated in the absorbent microspheres. The PEI/MMA-MSMs exhibited a smooth surface, regular shape, good dispersion, and uniform particle size, with a distribution between 200 and 500 nm. The addition of methyl methacrylate (MMA) increased the average particle size of the microspheres and provided more adsorption sites for Cd(II) ions. In addition, PEI/MMA-MSMs showed better thermal stability, and the magnetization of the PEI/MSMs and PEI/MMA-MSMs was 9.8 emu g−1 and 14.6 emu g−1, respectively. The pH value was an important factor affecting the adsorption of Cd(II) on PEI/MSMs and PEI/MMA-MSMs, and the maxima adsorption capacity on PEI/MSMs and PEI/MMA-MSMs was 121 mg g−1 and 187 mg g−1 at pH 6 and 5, respectively. The Cd(II) adsorption on PEI/MSMs and PEI/MMA-MSMs could be fitted by a Langmuir isotherm adsorption model and a pseudo-second-order kinetic equation, and the -NH2 and -OH groups in the adsorbent interacted with the Cd(II) in the solution mainly by sharing electron pairs. The adsorbent exhibited good recyclability after 5 adsorption–desorption cycles of PEI/MSMs and PEI/MMA-MSMs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang L, Ma P, Dai L, Li S, Yu W, Guan J (2021) In situ crystallization and growth of TiO2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal Sci Technol 11:3834–3844. https://doi.org/10.1039/D1CY00239B

    Article  CAS  Google Scholar 

  2. Wei H, Ma J, Shi Y, Cui D, Guo Z (2020) Correction: Sustainable cross-linked porous corn starch adsorbents with high methyl violet adsorption. ES Mater Manuf 9. https://doi.org/10.30919/esmm5f721

  3. Chen J, Wang X, Huang Y, Lv S, Cao D (2018) Adsorption removal of pollutant dyes in wastewater by nitrogen-doped porous carbons derived from natural leaves. Eng Sci 5:30–38. https://doi.org/10.30919/es8d666

    Article  Google Scholar 

  4. Yin C, Wang C, Hu Q (2021) Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv Compos Hybrid Mater 4:360–370. https://doi.org/10.1007/s42114-021-00214-3

    Article  CAS  Google Scholar 

  5. Xie X, Gao H, Luo X, Su T, Qin ZJJ, o E C E, (2019) Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution. J Environ Chem Eng 7:103183. https://doi.org/10.1016/j.jece.2019.103183

    Article  CAS  Google Scholar 

  6. Dang H-C, Yuan X, Xiao Q, Xiao W-X, Luo Y-K, Wang X-L, Song F, Wang Y-Z (2017) Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions. J Environ Chem Eng 5:4505–4515. https://doi.org/10.1016/j.jece.2017.08.029

    Article  CAS  Google Scholar 

  7. Huang J, Li Y, Cao Y, Peng F, Cao Y, Shao Q, Liu H, Guo Z (2018) Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. J Mater Chem A 6:13062–13074. https://doi.org/10.1039/C8TA02861C

    Article  CAS  Google Scholar 

  8. Akinterinwa A, Oladele E, Adebayo A, Ajayi O, Gurgur EJWS (2020) Cross-linked-substituted (esterified/etherified) starch derivatives as aqueous heavy metal ion adsorbent: a review. Water Sci Technol 82:1–26. https://doi.org/10.2166/wst.2020.332

    Article  CAS  Google Scholar 

  9. Gupta AD, Rawat KP, Bhadauria V, Singh H (2021) Recent trends in the application of modified starch in the adsorption of heavy metals from water: a review. Carbohydr Polym 269:117763. https://doi.org/10.1016/j.carbpol.2021.117763

    Article  CAS  Google Scholar 

  10. Chen Y, Guo Z, Das R, Jiang Q (2020) Starch-based carbon nanotubes and graphene: preparation, properties and applications. ES Food & Agroforestry 2:13–21. https://doi.org/10.30919/esfaf1111

    Article  Google Scholar 

  11. Hu H, Liu W, Shi J, Huang Z, Zhang Y, Huang A, Yang M, Qin X, Shen F (2016) Structure and functional properties of octenyl succinic anhydride modified starch prepared by a non-conventional technology. Starch/Stärke 68:151–159. https://doi.org/10.1002/star.201500195

    Article  CAS  Google Scholar 

  12. Zheng Y, Fu Z, Li D, Wu M (2018) Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive. Materials 11:1996–1944. https://doi.org/10.3390/ma11071057

    Article  CAS  Google Scholar 

  13. Xie X, Zhao X, Luo X, Su T, Zhang Y, Qin Z, Ji H (2021) Mechanically activated starch magnetic microspheres for Cd(II) adsorption from aqueous solution. Chin J Chem Eng 33:40–49. https://doi.org/10.1016/j.cjche.2020.06.003

    Article  CAS  Google Scholar 

  14. Haq F, Mehmood S, Haroon M, Kiran M, Waseem K, Aziz T, Farid A (2021) Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. J Polym Environ. https://doi.org/10.1007/s10924-021-02337-6

    Article  Google Scholar 

  15. Hashem A, Aniagor CO, Afifi MA-F, Abou-Okeil A, Samaha SH (2021) Synthesis of super-absorbent poly(AN)-g-starch composite hydrogel and its modelling for aqueous sorption of cadmium ions. Korean J Chem Eng 38:2157–2170. https://doi.org/10.1007/s11814-021-0856-7

    Article  CAS  Google Scholar 

  16. Keirudin AA, Zainuddin N, Yusof NA (2020) Crosslinked carboxymethyl sago starch/citric acid hydrogel for sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from aqueous solution. Polymers 12:2465. https://doi.org/10.3390/polym12112465

    Article  CAS  Google Scholar 

  17. Wang S, Xiao K, Mo Y, Yang B, Vincent T, Faur C, Guibal E (2020) Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: effect of glutaraldehyde crosslinking and storage condition. J Hazard Mater 386:121637. https://doi.org/10.1016/j.jhazmat.2019.121637

    Article  CAS  Google Scholar 

  18. Jin X, Xiang Z, Liu Q, Chen Y, Lu F (2017) Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Biores Technol 244:844–849. https://doi.org/10.1016/j.biortech.2017.08.072

    Article  CAS  Google Scholar 

  19. Xie X, Huang J, Zhang Y, Tong Z, Liao A, Guo X, Qin Z, Guo Z (2019) Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. Korean J Chem Eng 36:226–235. https://doi.org/10.1007/s11814-018-0190-x

    Article  CAS  Google Scholar 

  20. Qiang RB, Hu ZG, Yang YY, Li ZM, An N, Ren XY, Hu HX, Wu HY (2015) Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors. Electrochim Acta 167:303–310. https://doi.org/10.1016/j.electacta.2015.03.190

    Article  CAS  Google Scholar 

  21. Abdolali A, Ngo HH, Guo WS, Zhou JL, Zhang J, Liang S, Chang SW, Nguyen DD, Liu Y (2017) Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour Technol 229:78–87. https://doi.org/10.1016/j.biortech.2017.01.016

    Article  CAS  Google Scholar 

  22. Xu YL, Chen BL (2015) Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. J Soils Sediments 15:60–70. https://doi.org/10.1007/s11368-014-0969-2

    Article  CAS  Google Scholar 

  23. Cheng QM, Huang Q, Khan S, Liu YJ, Liao ZN, Li G, Ok YS (2016) Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng 87:240–245. https://doi.org/10.1016/j.ecoleng.2015.11.045

    Article  Google Scholar 

  24. Zhou N, Chen HG, Xi JT, Yao DH, Zhou Z, Tian Y, Lu XY (2017) Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour Technol 232:204–210. https://doi.org/10.1016/j.biortech.2017.01.074

    Article  CAS  Google Scholar 

  25. Han LF, Sun HR, Ro KS, Sun K, Libra JA, Xing BS (2017) Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour Technol 234:77–85. https://doi.org/10.1016/j.biortech.2017.02.130

    Article  CAS  Google Scholar 

  26. Yu D, Wang Y, Wu M, Zhang L, Wang L, Ni H (2019) Surface functionalization of cellulose with hyperbranched polyamide for efficient adsorption of organic dyes and heavy metals. J Clean Prod 232:774–783. https://doi.org/10.1016/j.jclepro.2019.06.024

    Article  CAS  Google Scholar 

  27. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  28. Liu XL, Gao YF, Luo HJ, Jin RH (2014) Synergistically constructed polyamine/nanosilica/graphene composites: preparation, features and removal of Hg2+ and dyes from contaminated water. RSC Adv 4:9594–9601. https://doi.org/10.1039/c3ra46733c

    Article  CAS  Google Scholar 

  29. Jin XC, Xiang ZY, Liu QG, Chen Y, Lu FC (2017) Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresour Technol 244:844–849. https://doi.org/10.1016/j.biortech.2017.08.072

    Article  CAS  Google Scholar 

  30. Melone L, Rossi B, Pastori N, Panzeri W, Mele A, Punta C (2015) TEMPO-oxidized cellulose cross-linked with branched polyethyleneimine: nanostructured adsorbent sponges for water remediation. ChemPlusChem 80:1408–1415. https://doi.org/10.1002/cplu.201500145

    Article  CAS  Google Scholar 

  31. Yan YZ, An QD, Xiao ZY, Zheng W, Zhai SG (2017) Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(VI). Chem Eng J 313:475–486. https://doi.org/10.1016/j.cej.2016.12.099

    Article  CAS  Google Scholar 

  32. Zhang SL, Wang ZK, Chen HY, Kai CC, Jiang M, Wang Q, Zhou ZW (2018) Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal. Appl Surf Sci 440:1277–1285. https://doi.org/10.1016/j.apsusc.2018.01.191

    Article  CAS  Google Scholar 

  33. Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259. https://doi.org/10.1016/j.jclepro.2016.07.177

    Article  CAS  Google Scholar 

  34. Peng HB, Gao P, Chu G, Pan B, Peng JH, Xing BS (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  CAS  Google Scholar 

  35. Wang TT, Chen YH, Ma JF, Jin ZF, Chai MS, Xia XW, Zhang LH, Zhang YK (2018) A polyethyleneimine-modified attapulgite as a novel solid support in matrix solid-phase dispersion for the extraction of cadmium traces in seafood products. Talanta 180:254–259. https://doi.org/10.1016/j.talanta.2017.12.059

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21766001, 22168011, 21961160741), Guangxi Natural Science Foundation of China (No. 2018GXNSFAA281342), The Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2021Z011) and Special funding for “Guangxi Bagui Scholars.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzeng Qin or Hongbing Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Gao, H., Luo, X. et al. Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions. Adv Compos Hybrid Mater 5, 2772–2786 (2022). https://doi.org/10.1007/s42114-022-00422-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00422-5

Keywords

Navigation