Skip to main content
Log in

TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Volatile organic compounds including toluene have high carcinogenicity and are very harmful to human health. In this work, an efficient nanocomposite photocatalyst of TiO2@MIL-101(Cr) were synthesized by hydrothermal method. The photocatalytic performances of catalysts were analyzed by the degradation of toluene. The toluene removal efficiency of TiO2@MIL-101(Cr) was 23.28% higher than that of MIL-101(Cr), and 26.88% higher than that of bare TiO2. X-ray diffraction and scanning electron microscope results confirmed the successful synthesis of nanocomposite photocatalyst constructed of TiO2 nanoparticles and regular octahedral MIL-101(Cr). Compared with bare TiO2 nanoparticles, the specific surface area of TiO2@MIL-101(Cr) was improved from 49.4 to 136.08 m2 g−1. The reduced photoluminescence intensity of nanocomposite indicates the effective charge separation, which can increase the lifetime of charge carriers and improve the efficiency of interfacial charge transfer to the surface. The enhanced removal efficiency of the composites are mainly owing to the expansion of light response range, the suppress of electron (e) and holes (h+) recombination, the promotion of the electron transfer and the improved toluene adsorption ability of TiO2@MIL-101(Cr).

Graphical abstract

In this work, an efficient nanocomposite photocatalyst of TiO2@MIL-101(Cr) were synthesized by hydrothermal method. The toluene removal efficiency of TiO2@MIL-101(Cr) was 23.28% higher than that of MIL-101(Cr), and 26.88% higher than that of bare TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang H, Chen C, Yang R, Yu Y, Albilali R, He C (2020) Remarkable promotion effect of lauric acid on Mn-MIL-100 for non-thermal plasma-catalytic decomposition of toluene. Appl Surf Sci 503:144290

    Article  CAS  Google Scholar 

  2. Wang Q, Rhimi B, Wang H, Wang CY (2020) Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Appl Surf Sci 530:147286

    Article  CAS  Google Scholar 

  3. Zhang YG, Wu MY, Wang YF, Kwok YH, Pan WD, Szeto W, Huang HB, Leung DY (2021) Fluorinated TiO2 coupling with α-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. Appl Catal B Environ 140:117–134

    Google Scholar 

  4. Zhang Z, Jiang Z, Shang GW (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  CAS  Google Scholar 

  5. Huang Y, Ho SSH, Niu R, Xu L, Lu Y, Cao J, Lee SC (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21:56

    Article  Google Scholar 

  6. Luengas A, Barona A, Hort C, Gallastegui G, Platel V, Elias A (2015) A review of indoor air treatment technologies. Rev Environ Sci Bio/Technol 14:499–522

    Article  CAS  Google Scholar 

  7. Huang ZH, Chen H, Zhao L, He X, Fang W, Du YY, Li WX, Wang GH, Zhang FQ (2018) CdSe QDs sensitized MIL-125/TiO2@SiO2 biogenic hierarchical composites with enhanced photocatalytic properties via two-level heterostructure. J Mater Sci 29:12045–12054

    CAS  Google Scholar 

  8. Feizpoor S, Habibi-Yangjeh A, Yubuta K (2018) Integration of carbon dots and polyaniline with TiO2 nanoparticles:substantially enhanced photocatalytic activity to removal various pollutants under visible light. J Photochem Photobiol A 367:94–104

    Article  CAS  Google Scholar 

  9. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2019) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Polyhedron 45:7764–7778

    Google Scholar 

  10. Sheng HB, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2017) Urchin-inspired TiO2@MIL-101 double-shell hollow particles: adsorption and highly efficient photocatalytic degradation of hydrogen sulfide. Chem Mater 29:5612–5616

    Article  CAS  Google Scholar 

  11. Ma YJ, Tang Q, Sun WY, Yao ZY, Zhu WH, Li T, Wang JY (2020) Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. App Catal B Environ 270:118856

    Article  CAS  Google Scholar 

  12. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang KQ, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  CAS  Google Scholar 

  13. Tilgner D, Klarner M, Hammon S, Friedrich M, Verch A, Jonge ND, Kümmel ES, Kempe R (2019) H2-generation from alcohols by the MOF-based noble metal-free photocatalyst Ni/CdS/TiO2@MIL-101. Aust J Chem 72:842–847

    Article  CAS  Google Scholar 

  14. Zheng X, Xu S, Wang Y, Sun X, Gao Y, Gao B (2018) Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J Colloid Interface Sci 527:202–213

    Article  CAS  Google Scholar 

  15. Wang M, Cui Z, Yang M, Lin L, Chen X, Wang M, Han J (2019) Core/shell structured CdS/polydopamine/TiO2 ternary hybrids as highly active visible-light photocatalysis. J Colloid Interface Sci 544:1–7

    Article  CAS  Google Scholar 

  16. Chang N, Zhang H, Shi MS, Li J, Shao W, Wang T (2017) Metal-organic framework templated synthesis of TiO2@MIL-101 core–shell architectures for high-efficiency adsorption and photocatalysis. Mater Lett 200:55–58

    Article  CAS  Google Scholar 

  17. Liu XC, Zhou YY, Zhang JC, Tang L, Lu L, Zeng GM (2017) Iron containing metal-organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl Mater Interfaces 24:20255–20275

    Article  Google Scholar 

  18. Lia NX, Huang HL, Bibi RN, Shen QH, Ngulube RC, Zhoua JC, Liu MC (2019) Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution. Appl Surf Sci 476:378–386

    Article  Google Scholar 

  19. Ma X, Li L, Zeng Z, Chen R, Wang C, Zhou K, Su C, Li H (2019) Synthesis of nitrogenrich nanoporous carbon materials with C3N-type from ZIF-8 for methanol adsorption. Chem Eng J 363:49–56

    Article  CAS  Google Scholar 

  20. Dhakshinamoorthy A, Asiri AM, Garcia H (2016) Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed Engl 55:5414–5445

    Article  CAS  Google Scholar 

  21. Wang B, Lv XL, Feng D, Xie LH, Zhang J, Li M, Xie Y, Li JR, Zhou HC (2016) Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 138:6204–16

    Article  CAS  Google Scholar 

  22. Rosser TE, Windle CD, Reisner E (2016) Electrocatalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2. Angew Chem Int Ed Engl 55:7388–7392

    Article  CAS  Google Scholar 

  23. Mehrabadi Z, Faghihian H (2018) Comparative photocatalytic performance of TiO2 supported on clinoptilolite and TiO2 /Salicylaldehyde-NH2-MIL-101(Cr) fordegradation of pharmaceutical pollutant atenolol under UV and visible Irradiations. J Photoch Photobio A 356:102–111

    Article  CAS  Google Scholar 

  24. Wang W, Xu D, Cheng B, Yu J, Jiang C, Mater J (2017) Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Chem A 5:5020–5029

    CAS  Google Scholar 

  25. Fang YY, Zhao GH, Dai W, Ma LY, Ma N (2017) Enhanced adsorption of rubidium ion by a phenol@MIL-101(Cr) composite material. Microporous Mesoporous Mat 25:151–57

    Google Scholar 

  26. Wang CC, Wang X, Liu W (2019) The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a State-of-the-Art review. Chem Eng J 391:12301

    Google Scholar 

  27. He X, Fang H, Gosztola DJ, Jiang Z, Jena P, Wang WN (2019) Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl Mater Interfaces 11:12516–12524

    Article  CAS  Google Scholar 

  28. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN, Sui KY, Patil RR, Pan D, Guo ZH, Fan RH (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  29. Luo F, Liu DQ, Cao TS, Cheng HF, Kuang JC, Deng YJ, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00275-4

    Article  Google Scholar 

  30. Lu XK, Zhu DM, Li X, Li MH, Chen Q, Qing YC (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00258-5

    Article  Google Scholar 

  31. Wu NN, Du WJ, Hu Q, Vupputuri S, Jiang QL (2021) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23

    CAS  Google Scholar 

  32. Yang X, Qi X, Ma GQ, Li ZY, Liu Q, Khan S, Zhao YJ, Zhang LL, Geng Z, Guo YN (2019) Novel Z-Scheme Ag/TiO2 /AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate. Appl Surf Sci 479:1048–1056

    Article  CAS  Google Scholar 

  33. Yang X, Ma FY, Li KX, Guo YN, Hu JL, Li W, Huo MX, Guo YH (2010) Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J Hazard Mater 175:429–438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by National Natural Science Foundation of China (No. 21806101), Natural Science Foundation of Shanghai (No. 16ZR1412600), Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University and Gaoyuan Discipline of Shanghai - Environmental Science and Engineering (Resource Recycling Science and Engineering), Cultivate discipline fund of Shanghai Polytechnic University (No.XXKPY1601), and Postgraduate Foundation of Shanghai Polytechnic University (EGD17YJ0026, EGD18YJ0059, EGD18YJ0062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Sun or Li Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wang, M., Fan, J. et al. TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene. Adv Compos Hybrid Mater 4, 1322–1329 (2021). https://doi.org/10.1007/s42114-021-00337-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00337-7

Keywords

Navigation