Skip to main content
Log in

Compression properties of porous Inconel 718 alloy formed by selective laser melting

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this study, porous Inconel 718 alloy (tetrahedral and diamond) were prepared using selective laser melting (SLM), and the compressive deformation behavior was studied. The results showed that both porous structures exhibited a linear elastic deformation stage, a plastic plateau stage, and a densification stage, which were the three stages of ductile porous materials. Tetrahedral porous structures have uneven stress distribution under compression loads, causing shear deformation. A diamond porous structure has uniform stress distribution under compression load, leading to upsetting deformation. When compared with the diamond porous structure, a tetrahedral porous structure shows better compression properties due to the reinforcement effect of the horizontal beam in the tetrahedral structure, which enhances the stiffness and strength of the material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xie P, Liu Y, Feng M et al (2021) Hierarchically porous co/c nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  2. Luo F, Liu D, Cao T et al (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 1–11. https://doi.org/10.1007/s42114-021-00275-4

  3. Xiao L, Qi H, Qu K et al (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous co 3 o 4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316. https://doi.org/10.1007/s42114-021-00223-2

    Article  CAS  Google Scholar 

  4. Zhang M, Dong M, Chen S et al (2018) Slippery liquid-infused porous surface fabricated on aluminum maintain stable corrosion resistance at elevated temperatures. Eng Sci 3(6):67–76. https://doi.org/10.30919/es8d732

    Article  Google Scholar 

  5. Li X, Zhao W, Yin R et al (2018) A highly porous polyaniline-graphene composite used for electrochemical supercapacitors. Eng Sci 3(31):89–95. https://doi.org/10.30919/es8d743

    Article  Google Scholar 

  6. Shyam A, Bruno G, Watkins T et al (2015) The effect of porosity and microcracking on the thermomechanical properties of cordierite. J Eur Ceram Soc 35(16):4557–4566. https://doi.org/10.1016/j.jeurceramsoc.2015.08.014

    Article  CAS  Google Scholar 

  7. Pabst W, Gregorová E, Tichá G (2007) Effective properties of suspensions, composites and porous materials. J Eur Ceram Soc 27(2–3):479–482. https://doi.org/10.1016/j.jeurceramsoc.2006.04.169

    Article  CAS  Google Scholar 

  8. Covaciu M, Walczak M, Ramos-grez J (2011) A method for manufacturing cellular metals with open-and close-type porosities. Mater Lett 65(19–20):2947–2950. https://doi.org/10.1016/j.matlet.2011.06.064

    Article  CAS  Google Scholar 

  9. Zhao Z, Xu X, Wang Q et al (2021) Microstructure and properties of periodic porous Inconel 718 alloy prepared by selective laser melting. Adv Compos Hybrid Mater 4:332–338. https://doi.org/10.1007/s42114-021-00240-1

    Article  CAS  Google Scholar 

  10. Banhart J (2001) Manufacture characterization and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  11. Qin J, Chen Q, Yang C et al (2015) Research process on property and application of metal porous materials. J Alloys Compd 654:39–44. https://doi.org/10.1016/j.jallcom.2015.09.148

    Article  CAS  Google Scholar 

  12. He Y, Xu H, Hu M, Jiang B, Ji Z (2020) Effect of glucose concentrations on wear resistance of Al/APC composites prepared by hydrothermal carbonized deposition on chips. J Mater Sci Techn 53: 82-90. https://doi.org/10.1016/j.jmst.2020.01.064

    Article  Google Scholar 

  13. Zhao Z, Guan R, Shen Y, Bai P (2021) Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling. J Materi Sci Techn 91: 251-261. https://doi.org/10.1016/j.jmst.2021.02.052

    Article  Google Scholar 

  14. Zhao Z, Zhang L, Bai P, Du W, Wang S, Xu X, Dong Q, Li Y, Han B (2021) Tribological Behavior of In Situ TiC/Graphene/Graphite/Ti6Al4V Matrix Composite Through Laser Cladding. Acta Metallurgica Sinica (English Letters) . https://doi.org/10.1007/s40195-021-01215-3

  15. Zhao Z, Bai P, Du W, Liu B, Pan D, Das R, Liu C, Guo Z (2020) An overview of graphene and its derivatives reinforced metal matrix composites: Preparation properties and applications. Carbon 170: 302-326. https://doi.org/10.1016/j.carbon.2020.08.040

    Article  CAS  Google Scholar 

  16. Nie R, Wang Q, Sun P et al (2019) Pulsed laser deposition of NiSe2 film on carbon nanotubes for high-performance supercapacitor. Eng Sci 6(6):22–29. https://doi.org/10.30919/es8d668

    Article  Google Scholar 

  17. Seok I, Al-Hossain A, Waliullah M et al (2019) Fabrication of nano-patterned arrays using pulsed light technique. Eng Sci 7:59–64. https://doi.org/10.30919/es8d506

    Article  Google Scholar 

  18. Munn C, Haran S, Seok I (2013) Fabrication of CZTS-based thin film solar cells using all-solution processing and pulsed light crystallization. In: Nanosensors Biosensors and Info-Tech Sensors and Systems 2013. International Society for Optics and Photonics. https://doi.org/10.1117/12.2012065

  19. Yang X, Liang C, Ma T et al (2018) A review on thermally conductive polymeric composites: classification measurement model and equations mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  20. Wang Q, Zhao Z, Bai P et al (2021) Effects of alloying elements X (Cr Mn Mo Ni Si) on the interface stability of TiC (001)/γ-Fe (001) in TiC/316L stainless steel composite formed by selective laser melting: first principles and experiments. Adv Compos Hybrid Mater 4:195–204. https://doi.org/10.1007/s42114-021-00212-5

    Article  CAS  Google Scholar 

  21. Sames W, List F, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  CAS  Google Scholar 

  22. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5–8):1721–1754. https://doi.org/10.1007/s00170-012-4605-2

    Article  Google Scholar 

  23. Paul A, Ramamurty U (2000) Strain rate sensitivity of a closed-cell aluminum foam. Mater Sci Eng A 281(1–2):1–7. https://doi.org/10.1016/S0921-5093(99)00750-9

    Article  Google Scholar 

  24. Li X, Wu G, Liu X et al (2017) Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 31:1–8. https://doi.org/10.1016/j.nanoen.2016.11.002

    Article  CAS  Google Scholar 

  25. Yang D, Shang R, Hui W et al (2010) Compressive properties of cellular Mg foams fabricated by melt-foaming method. Mater Sci Eng A 527(21–22):5405–5409. https://doi.org/10.1016/j.msea.2010.05.017

    Article  CAS  Google Scholar 

  26. Yadroitsev I, Shishkovsky I, Bertrand P et al (2009) Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci 255(10):5523–5527. https://doi.org/10.1016/j.apsusc.2008.07.154

    Article  CAS  Google Scholar 

  27. Michailidis N, Stergioudi F, Tsouknidas A et al (2011) Compressive response of Al-foams produced via a powder sintering process based on a leachable space holder material. Mater Sci Eng A 528(3):1662–1667. https://doi.org/10.1016/j.msea.2010.10.088

    Article  CAS  Google Scholar 

  28. Ge J, Huang J, Lei Y et al (2020) Microstructural features and compressive properties of SLM Ti6Al4V lattice structures. Surf Coat Technol 403:126419. https://doi.org/10.1016/j.surfcoat.2020.126419

    Article  CAS  Google Scholar 

  29. Huo P, Zhao Z, Bai P et al (2021) Deformation evolution and fracture mechanism of porous TC4 alloy scaffolds fabricated using selective laser melting under uniaxial compression. J Alloys Compd 861:158529. https://doi.org/10.1016/j.jallcom.2020.158529

    Article  CAS  Google Scholar 

  30. Raghavendra S, Molinari A, Fontanari V et al (2018) Tensile and compression properties of variously arranged porous Ti-6Al-4V additively manufactured structures via SLM. Procedia Struct Integr 13:149–154. https://doi.org/10.1016/j.prostr.2018.12.025

    Article  Google Scholar 

  31. Zhao YF, Koizumi Y, Aoyagi K et al (2019) Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy. Addit Manuf 26:202–214. https://doi.org/10.1016/j.addma.2018.12.002

    Article  CAS  Google Scholar 

  32. Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: Part I Mathematical modeling numerical methodology role of recoil pressure multiple reflections and free surface evolution. Metall Mater Trans A 33(6):1817–1830. https://doi.org/10.1007/s11661-002-0190-6

    Article  Google Scholar 

  33. Cheung N, Ferreira IL, Pariona MM et al (2009) Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings. Mater Des 30(9):3592–3601. https://doi.org/10.1016/j.matdes.2009.02.025

    Article  CAS  Google Scholar 

  34. Li ZH, Nie YF, Liu B et al (2020) Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting. Mater Des 192:108709. https://doi.org/10.1016/j.matdes.2020.108709

    Article  CAS  Google Scholar 

  35. Li X, Shi JJ, Wang CH et al (2018) Effect of heat treatment on microstructure evolution of inconel 718 alloy fabricated by selective laser melting. J Alloys Compd 764:639–649. https://doi.org/10.1016/j.jallcom.2018.06.112

    Article  CAS  Google Scholar 

  36. Deng D, Peng RL, Brodin H et al (2018) Microstructure and mechanical properties of inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments. Mater Sci Eng 713:294–306. https://doi.org/10.1016/j.msea.2017.12.043

    Article  CAS  Google Scholar 

  37. Zhang H, Chen X, Fan X et al (2012) Compressive properties of aluminum foams by gas injection method. Research & Development 3:215–220. https://doi.org/10.1016/S0006-291X(88)80109-8

    Article  Google Scholar 

  38. Li B, Wang C, Lu X (2013) Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique. Mater Des 50:613–619. https://doi.org/10.1016/j.matdes.2013.02.082

    Article  CAS  Google Scholar 

  39. Yang Q, Sun K, Yang C et al (2021) Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting. J Alloys Compd 858:157674. https://doi.org/10.1016/j.jallcom.2020.157674

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanyong Zhao or Peikang Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, Z., Liu, B. et al. Compression properties of porous Inconel 718 alloy formed by selective laser melting. Adv Compos Hybrid Mater 4, 1309–1321 (2021). https://doi.org/10.1007/s42114-021-00327-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00327-9

Keywords

Navigation