Skip to main content

Advertisement

Log in

Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

A Correction to this article was published on 25 August 2021

This article has been updated

Abstract

Conforming to sustainable development trend, natural material cellulose has been extensively studied in the field of energy storage. However, its low conductivity is a huge obstacle to its application in supercapacitors. Integrating nanocellulose as a green binder with conductive materials achieves the efficient use of natural resources. Here, carbon nanotubes (CNTs) were embedded in porous Co3O4 (PCO) dodecahedrons in situ derived from zeolitic imidazolate framework-67 (ZIF-67), for which the morphologies of the composites were considerably remained at the dodecahedron. The main pseudo-capacitive materials are regulated by different amounts of CNTs to modify the morphology and enhance the conductivity. For electrode materials, the charming structure of PCO-CNTs (PCC) with multichannels allows efficient electron transfer, which brings about a competent utilization of redox active sites in PCO. What is more worth mentioning is that the nanocellulose-PCC nanocomposites with good processing properties were used to form binder-free electrodes. Given the fine designed structure and good electrochemical performance, the electrodes were assembled into symmetric supercapacitors, showing high areal capacitance, energy, and power density. The preparation of composites based on PCC and nanocellulose provides a new way to develop sustainable energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Li D, Sun J, Ma R, Wei J (2020) High-efficient and low-cost H2 production by solar-driven photo-thermo-reforming of methanol with CuO catalyst. ES Energy Environ 9:82–88. https://doi.org/10.30919/esee8c722

  2. Rakhunde SS, Gadave KM, Shinde DR, Bhujbal PK (2020) Effect of dye absorption time on the performance of a novel 2-HNDBA sensitized ZnO photo anode based dye-sensitized solar cell. Eng Sci 12:117–124. https://doi.org/10.30919/es8d1146

  3. Sayyed SAAR, Beedri NI, Bhujbal PK, Shaikh SF, Pathan HM JEM, Manufacturing (2020) Eosin-Y sensitized bi-layered ZnO nanoflower-CeO2 photoanode for dye-sensitized solar cells application. ES Mater Manuf 10:45–51. https://doi.org/10.30919/esmm5f939

  4. Kapadnis RS, Bansode SB, Supekar AT, Bhujbal PK, Kale SS, Jadkar SR, Pathan HM (2020) Cadmium telluride/cadmium sulfide thin films solar cells: a review. ES Energy Environ 10:3–12. https://doi.org/10.30919/esee8c706

  5. Satpute SD, Jagtap JS, Bhujbal PK, Sonar SM, Baviskar PK, Jadker SR, Pathan HM (2020) Mercurochrome sensitized ZnO/In2O3 photoanode for dye-sensitized solar cell. ES Energy Environ 9:89–94. https://doi.org/10.30919/esee8c720

  6. Elayappan V, Murugadoss V, Fei Z, Dyson PJ, Angaiah S (2020) Influence of polypyrrole incorporated electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye Sensitized Solar Cell. Eng Sci 10:78–84. https://doi.org/10.30919/es5e1007

  7. Fu Y, Pei X, Dai Y, Mo D, Lyu S (2019) Three-dimensional graphene-like carbon prepared from CO2 as anode material for high-performance lithium-ion batteries. ES Energy Environ 4:66–73. https://doi.org/10.30919/esee8c292

  8. Hou C, Hou J, Zhang H, Ma Y, He X, Geng W, Zhang Q (2020) Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sci 11:36–43. https://doi.org/10.30919/es5e1006

  9. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

  10. Dizaji MT, Li W (2020) Higher voltage redox flow batteries with hybrid acid and base electrolytes. Eng Sci 11:54–65. https://doi.org/10.30919/es8d1118

  11. Li G, Dang C, Hou Y, Dang F, Fan Y, Guo Z (2020) Experimental and theoretical characteristic of single atom Co-N-C catalyst for Li-O2 batteries. Eng Sci 10:85–94. https://doi.org/10.30919/es8d1005

  12. Huang Y, Cui F, Bao J, Zhao Y, Lian J, Liu T, Li H (2019) MnCo2S4/FeCo2S4 “lollipop” arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. J Mater Chem A 7:20778–20789. https://doi.org/10.1039/c9ta04457d

    Article  CAS  Google Scholar 

  13. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51. https://doi.org/10.30919/es8d1140

  14. Nie R, Wang Q, Sun P, Wang R, Yuan Q, Wang X (2018) Pulsed laser deposition of NiSe2 film on carbon nanotubes for high-performance supercapacitor. Eng Sci 6:22–29. https://doi.org/10.30919/es8d668

  15. Hekmat F, Shahrokhian S, Taghavinia N (2018) Ultralight flexible asymmetric supercapacitors based on manganese dioxide-polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J Phys Chem C 122:27156–27168. https://doi.org/10.1021/acs.jpcc.8b07464

    Article  CAS  Google Scholar 

  16. Zhou SY, Stromme M, Xu C (2019) Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers @metal-organic frameworks. Chem-Eur J 25:3515–3520. https://doi.org/10.1002/chem.201806417

    Article  CAS  Google Scholar 

  17. Xia L, Li X, Wu X, Huang L, Liao Y, Qing Y, Wu Y, Lu X (2018) Fe3O4 nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors. J Mater Chem A 6:17378–17388. https://doi.org/10.1039/c8ta05678a

    Article  CAS  Google Scholar 

  18. Yuan B, Li L, Murugadoss V, Vupputuri S, Wang J, Alikhani N, Guo ZJEF, Agroforestry (2020) Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food & Agrofor 1:41–52. https://doi.org/10.30919/esfaf0004

  19. Li S, Jasim A, Zhao W, Fu L, Ullah MW, Shi Z, Yang G (2018) Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater Manuf 1:41–49. https://doi.org/10.30919/esmm5f120

  20. Boni BOO, Lamboni L, Bakadia BM, Hussein SA, Yang G (2020) Combining silk sericin and surface micropatterns in bacterial cellulose dressings to control fibrosis and enhance wound healing. Eng Sci 10:68–77. https://doi.org/10.30919/es8d906

  21. Xie S, Zhang X, Walcott MP, Lin H (2018) Applications of cellulose nanocrystals: a review. Eng Sci 2:4–16. https://doi.org/10.30919/es.1803302

  22. Sharma K, Pareek K, Rohan R, Kumar P (2019) Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite. Int J Energ Res 43:604–611. https://doi.org/10.1002/er.4277

    Article  CAS  Google Scholar 

  23. Ma L, Liu R, Liu L, Wang F, Niu H, Huang Y (2016) Facile synthesis of Ni(OH)(2)/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. J Power Sources 335:76–83. https://doi.org/10.1016/j.jpowsour.2016.10.006

    Article  CAS  Google Scholar 

  24. Liu T, Wu W, Liao KN, Sun Q, Gong X, Roy VAL, Yu ZZ, Li RKY (2019) Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohydr Polym 214:213–220. https://doi.org/10.1016/j.carbpol.2019.03.040

    Article  CAS  Google Scholar 

  25. Jyothibasu JP, Kuo DW, Lee RH (2019) Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 26:4495–4513. https://doi.org/10.1007/s10570-019-02376-2

    Article  CAS  Google Scholar 

  26. Cai J, Xu W, Liu Y, Zhu Z, Liu G, Ding W, Wang G, Wang H, Luo Y (2019) Robust construction of flexible bacterial cellulose@Ni(OH)2 paper: toward high capacitance and sensitive H2O2 detection. Eng Sci 5:21–29. https://doi.org/10.30919/es8d669

  27. Liu R, Ma L, Niu G, Li X, Li E, Bai Y, Liu Y, Yuan G (2017) Flexible Ti-doped FeOOH quantum dots/graphene/bacterial cellulose anode for high-energy asymmetric supercapacitors. Part Part Syst Char 34:1700213. https://doi.org/10.1002/ppsc.201700213

    Article  CAS  Google Scholar 

  28. Liu R, Ma L, Niu G, Li X, Li E, Bai Y, Yuan G (2017) Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors. Adv Funct Mater 27:1701635. https://doi.org/10.1002/adfm.201701635

    Article  CAS  Google Scholar 

  29. Luo L, Zhou Y, Yan W, Wu X, Wang S, Zhao W (2020) Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochim Acta 360:137010. https://doi.org/10.1016/j.electacta.2020.137010

    Article  CAS  Google Scholar 

  30. Chen LM, Yu HY, Wang DC, Yang T, Yao JM, Tam KC (2019) Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustain Chem Eng 7:11823–11831. https://doi.org/10.1021/acssuschemeng.9b02287

    Article  CAS  Google Scholar 

  31. Dong H, Li Y, Chai H, Cao Y, Chen X (2019) Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Energy Environ 4:19–26

    Google Scholar 

  32. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2015) Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12:1–8. https://doi.org/10.1016/j.nanoen.2014.11.043

    Article  CAS  Google Scholar 

  33. Xiong D, Li X, Bai Z, Li J, Shan H, Fan L, Long C, Li D, Lu X (2018) Rational design of hybrid Co3O4/graphene films: free-standing flexible electrodes for high performance supercapacitors. Electrochim Acta 259:338–347. https://doi.org/10.1016/j.electacta.2017.10.160

    Article  CAS  Google Scholar 

  34. Sayyed SG, Mahadik MA, Shaikh AV, Jang JS, Pathan HM (2019) Nano-metal oxide based supercapacitor via electrochemical deposition. ES Energy Environ 3:25–44. https://doi.org/10.30919/esee8c211

  35. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  36. Qu K, You Y, Qi H, Shi C, Sun Z, Huang Z, Yuan B, Guo Z (2020) Fungus bran-derived porous N-doped carbon-zinc manganese oxide nanocomposite positive electrodes toward high-performance asymmetric supercapacitors. J Phys Chem C 124:15713–15722. https://doi.org/10.1021/acs.jpcc.0c03098

    Article  CAS  Google Scholar 

  37. Zhao G, Tang Y, Wan G, Xu X, Zhou X, Zhou M, Hao C, Deng S, Wang G (2020) High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J Colloid Interface Sci 572:151–159. https://doi.org/10.1016/j.jcis.2020.03.084

    Article  CAS  Google Scholar 

  38. Yuan S, Chen W, Zhang L, Liu Z, Liu J, Liu T, Li G, Wang Q (2019) Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small 15:1903311. https://doi.org/10.1002/smll.201903311

    Article  CAS  Google Scholar 

  39. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59. https://doi.org/10.30919/es8d903

  40. Wu N, Hu Q, Wei R, Mai X, Naik N, Pan D, Guo Z, Shi Z (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 176:88–105. https://doi.org/10.1016/j.carbon.2021.01.124

    Article  CAS  Google Scholar 

  41. Liu Y, Wang Y, Shi C, Chen Y, Li D, He Z, Wang C, Guo L, Ma J (2020) Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor. Carbon 165:129–138. https://doi.org/10.1016/j.carbon.2020.04.084

    Article  CAS  Google Scholar 

  42. Zhao G, Xu X, Zhu G, Shi J, Li Y, Zhang S, Hossain MSA, Wu KCW, Tang J, Yamauchi Y (2020) Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties. Microporous Mesoporous Mater 303:110257. https://doi.org/10.1016/j.micromeso.2020.110257

    Article  CAS  Google Scholar 

  43. Cheng L, Zhang Q, Xu M, Zhai Q, Zhang C (2021) Two-for-one strategy: three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J Colloid Interface Sci 583:299–309. https://doi.org/10.1016/j.jcis.2020.09.040

    Article  CAS  Google Scholar 

  44. Aadil M, Zulfiqar S, Shahid M, Haider S, Shakir I, Warsi MF (2020) Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. J Alloys Compd 844:156062. https://doi.org/10.1016/j.jallcom.2020.156062

    Article  CAS  Google Scholar 

  45. Xiang X, Pan F, Li Y (2018) Flower-like bismuth metal-organic frameworks grown on carbon paper as a free-standing electrode for efficient electrochemical sensing of Cd2+ and Pb2+ in water. Eng Sci 3:77–83. https://doi.org/10.30919/es8d736

  46. Wu D, Zhang X, Zhu J, Cheng D (2018) Concerted catalysis on Tanghulu-like Cu@zeolitic imidazolate framework-8 (ZIF-8) nanowires with tuning catalytic performances for 4-nitrophenol reduction. Eng. Sci. 2:49–56. https://doi.org/10.30919/es8d718

  47. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ 8:65–77. https://doi.org/10.30919/esee8c415

  48. Nong W, Liu X, Wang Q, Wu J, Guan Y (2020) Metal-organic framework-based materials: synthesis, stability and applications in food safety and preservation. ES Food & Agrofor 1:11–40. https://doi.org/10.30919/esfaf0001

  49. Fang H, Gu A, Yuan L, Liang G (2020) High-performance wearable asymmetric electrochemical capacitors based on composite aramid nonwovens with unique surface architecture. Appl Surf Sci 517:14622. https://doi.org/10.1016/j.apsusc.2020.146222

    Article  CAS  Google Scholar 

  50. Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z (2020) Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. Chemosphere 259:127389–127389. https://doi.org/10.1016/j.chemosphere.2020.127389

    Article  CAS  Google Scholar 

  51. Ma X, Li L, Zeng Z, Chen R, Wang C, Zhou K, Su C, Li H (2019) Synthesis of nitrogen-rich nanoporous carbon materials with C3N-type from ZIF-8 for methanol adsorption. Chem Eng J 363:49–56. https://doi.org/10.1016/j.cej.2019.01.132

    Article  CAS  Google Scholar 

  52. Song JL, Huang ZQ, Mao J, Chen WJ, Wang B, Yang FW, Liu SH, Zhang HJ, Qiu LP, Chen JH (2020) A facile synthesis of uniform hollow MIL-125 titanium-based nanoplatform for endosomal esacpe and intracellular drug delivery. Chem Eng J 396:125241. https://doi.org/10.1016/j.cej.2020.125246

    Article  CAS  Google Scholar 

  53. Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA (2020) Evaluating UiO-66 metal-organic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl Mater Interfaces 12:38989–39004. https://doi.org/10.1021/acsami.0c10900

    Article  CAS  Google Scholar 

  54. He W, Ifraemov R, Raslin A, Hod I (2018) Room-temperature electrochemical conversion of metal-organic frameworks into porous amorphous metal sulfides with tailored composition and hydrogen evolution activity. Adv Funct Mater 28:1707244. https://doi.org/10.1002/adfm.201707244

    Article  CAS  Google Scholar 

  55. Hao W, Chen S, Cai Y, Zhang L, Li Z, Zhang S (2014) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2:13801–13804. https://doi.org/10.1039/c4ta02012j

    Article  CAS  Google Scholar 

  56. Zheng Y, Gao R, Zheng L, Sun L, Hu Z, Liu X (2019) Ultrathin Co3O4 nanosheets with edge-enriched 111 planes as efficient catalysts for lithium-oxygen batteries. ACS Catal 9:3773–3782. https://doi.org/10.1021/acscatal.8b05182

    Article  CAS  Google Scholar 

  57. Xu C, Kong X, Zhou S, Zheng B, Huo F, Strømme M (2018) Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J Mater Chem A 6:24050–24057. https://doi.org/10.1039/c8ta10133g

    Article  CAS  Google Scholar 

  58. Du W, Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, Murugadoss V, Guo Z (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915. https://doi.org/10.1016/j.electacta.2018.11.074

  59. Zhao X, Wang Z, Dong J, Huang T, Zhang Q, Zhang L (2020) Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J Power Sources 470:228356. https://doi.org/10.1016/j.jpowsour.2020.228356

    Article  CAS  Google Scholar 

  60. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng X, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10:1932–1938. https://doi.org/10.1002/smll.201303520

    Article  CAS  Google Scholar 

  61. Chen S, Wu Q, Wen M, Wang C, Wu Q, Wen J, Zhu M, Wang Y (2017) A tubular sandwich-structured CNT@Ni@Ni2(CO3)(OH)(2) with high stability and superior capacity as hybrid supercapacitor. J Phys Chem C 121:9719–9728. https://doi.org/10.1021/acs.jpcc.7b01551

    Article  CAS  Google Scholar 

  62. Zhou S, Kong X, Zheng B, Huo F, Stromme M, Xu C (2019) Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13:9578–9586. https://doi.org/10.1021/acsnano.9b04670

    Article  CAS  Google Scholar 

  63. Zhang R, Zhou T, Wang L, Zhang T (2018) Metal-organic frameworks-derived hierarchical Co3O4 structures as efficient sensing materials for acetone detection. ACS Appl Mater Interfaces 10:9765–9773. https://doi.org/10.1021/acsami.7b17669

    Article  CAS  Google Scholar 

  64. Song N, Wang C, Lu X (2020) Rational design of hierarchical CoO/NiO nanosheets on conductive polypyrrole nanotubes for peroxidase mimicking and sensing application. ACS Sustain Chem Eng 8:11069–11078. https://doi.org/10.1021/acssuschemeng.0c00249

    Article  CAS  Google Scholar 

  65. Chao W, Li Y, Sun X, Cao G, Wang C, Ho SH (2021) Enhanced wood-derived photothermal evaporation system by in-situ incorporated lignin carbon quantum dots. Chem Eng J 405:126703. https://doi.org/10.1016/j.cej.2020.126703

    Article  CAS  Google Scholar 

  66. Li X, Wang L, Li X, Zhang J, Wang M, Che R (2020) Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon 172:15–25. https://doi.org/10.1016/j.carbon.2020.09.068

    Article  CAS  Google Scholar 

  67. Yu Y, Ji Y, Lu J, Yin X, Zhou Q (2021) Degradation of sulfamethoxazole by Co3O4-palygorskite composites activated peroxymonosulfate oxidation. Chem Eng J 406:126759. https://doi.org/10.1016/j.cej.2020.126759

    Article  CAS  Google Scholar 

  68. Zan G, Wu Q (2016) Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv Mater 28:2099–2147. https://doi.org/10.1002/adma.201503215

    Article  CAS  Google Scholar 

  69. Yan J, Miao L, Duan H, Zhu D, Lv Y, Xiong W, Li L, Gan L, Liu M (2020) Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochim Acta 358:136899. https://doi.org/10.1016/j.electacta.2020.136899

    Article  CAS  Google Scholar 

  70. Yin Q, He L, Lian J, Sun J, Xiao S, Luo J, Sun D, Xie A, Lin B (2019) The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 155:147–154. https://doi.org/10.1016/j.carbon.2019.08.060

    Article  CAS  Google Scholar 

  71. Kong X, Zhou S, Strømme M, Xu C (2021) Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon 171:248–256. https://doi.org/10.1016/j.carbon.2020.09.003

    Article  CAS  Google Scholar 

  72. Mukherji A, Saikia L, Srivastava R (2019) Few-layer MoS2 wrapped MnCO3 on graphite paper: a hydrothermally grown hybrid negative electrode for electrochemical energy storage. Chem Eng J 373:1233–1246. https://doi.org/10.1016/j.cej.2019.05.133

    Article  CAS  Google Scholar 

  73. Yang J, Xu X, Zhou X, Jiang S, Chen W, Shi S, Wang D, Liu Z (2020) Ultrasmall Co3O4 nanoparticles confined in P, N-doped carbon matrices for high-performance supercapacitors. J Phys Chem C 124:9225–9232. https://doi.org/10.1021/acs.jpcc.0c01539

    Article  CAS  Google Scholar 

  74. Liu Y, Li Z, Yao L, Chen S, Zhang P, Deng L (2019) Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J 366:550–559. https://doi.org/10.1016/j.cej.2019.02.125

    Article  CAS  Google Scholar 

  75. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  76. Cheng C, Xu J, Gao W, Jiang S, Guo R (2019) Preparation of flexible supercapacitor with RGO/Ni-MOF film on Ni-coated polyester fabric. Electrochim Acta 318:23–31. https://doi.org/10.1016/j.electacta.2019.06.055

    Article  CAS  Google Scholar 

  77. Fu D, Zhou H, Zhang XM, Han G, Chang Y, Li H (2016) Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically-codeposited PEDOT-GO. ChemistrySelect 1:285–289. https://doi.org/10.1002/slct.201600084

    Article  CAS  Google Scholar 

  78. Ovhal MM, Kumar N, Lim S, Kang J-W (2020) Large-area (64 cm2), semi-transparent, flexible all-solid-state supercapacitor using D-bar coating process. Appl Surf Sci 529. https://doi.org/10.1016/j.apsusc.2020.147072

  79. Sun K, Feng E, Zhao G, Peng H, Wei G, Lv Y, Ma G (2019) A single robust hydrogel film based integrated flexible supercapacitor. ACS Sustain Chem Eng 7:165–173. https://doi.org/10.1021/acssuschemeng.8b02728

    Article  CAS  Google Scholar 

  80. Raj CJ, Manikandan R, Cho W-J, Yu KH, Kim BC (2020) High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth. Ceram Int 46:21736–21743. https://doi.org/10.1016/j.ceramint.2020.05.282

    Article  CAS  Google Scholar 

  81. Yu H, Rouelle N, Qiu A, Oh JA, Kempaiah DM, Whittle JD, Aakyiir M, Xing W, Ma J (2020) Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance. ACS Appl Mater Interfaces 12:37977–37985. https://doi.org/10.1021/acsami.0c05454

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31670592, 32071713), the Fundamental Research Funds for the Central Universities (No. 2572018AB38), the Outstanding Youth Foundation Project of Heilongjiang Province (JQ2019C001), and the Central University Basic Scientific Research Project of China (No. 2572020DX01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanhua Huang or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Author Zhanhua Huang was inadvertently not labelled as a co-corresponding author of the paper. This is now correctly reflected in the affiliation section.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 851 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, K., Sun, Z., Shi, C. et al. Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater 4, 670–683 (2021). https://doi.org/10.1007/s42114-021-00293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00293-2

Keywords

Navigation