Skip to main content
Log in

The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Catalytic stability and ethylene selectivity were significantly improved through adding K into Cr-based catalysts in oxidative dehydrogenation of ethane with CO2. A series of K promoted Cr catalysts with different K loading were prepared by impregnation method using Ce-Zr solid solution as support. The porosity, crystalline phase, surface chemical state, lattice oxygen property, redox, basicity etc. were investigated, and the results showed that high content of K would enrich surface Cr6+ and O species through the formation of K2CrO4/K2Cr2O7, which further improved the surface basicity. All of these factors acting to conversion and selectivity should be well coordinated to obtain a good productivity of ethylene. The introduction of K helped the desorption of ethylene from active sites and stabilized the reaction within times on stream of 50 h.

Graphical abstract

The introduction of surface K species suppressed the dry reforming but promoted the selective oxidation to produce ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cavani F, Trifiro F (1999) Selective oxidation of light alkanes: Interaction between the catalyst and the gas phase on different classes of catalytic materials. Catal Today 51:561–580. https://doi.org/10.1016/S0920-5861(99)00041-3

    Article  CAS  Google Scholar 

  2. Cavani F (2010) Catalytic selective oxidation: The forefront in the challenge for a more sustainable chemical industry. Catal Today 157:8–15. https://doi.org/10.1016/j.cattod.2010.02.072

    Article  CAS  Google Scholar 

  3. Wu J, Sharada SM, Ho C, Hauser AW, Head-Gordon M, Bell AT (2015) Ethane and propane dehydrogenation over PtIr/Mg(Al)O. Appl Catal A Gen 506:25–32. https://doi.org/10.1016/j.apcata.2015.08.029

    Article  CAS  Google Scholar 

  4. Mimura N, Okamoto M, Yamashita H, Oyama ST, Murata K (2006) Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J Phys Chem B 110:21764–21770. https://doi.org/10.1021/jp061966l

    Article  CAS  Google Scholar 

  5. Mimura N, Takahara I, Inaba M, Okamoto M, Murata K (2002) High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 as an oxidant. Catal Commun 3:257–262. https://doi.org/10.1016/S1566-7367(02)00117-6

    Article  CAS  Google Scholar 

  6. Gomez E, Yan B, Kattel S, Chen JG (2019) Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat Rev Chem 3:638–649. https://doi.org/10.1038/s41570-019-0128-9

    Article  CAS  Google Scholar 

  7. Kawi S, Kathiraser Y (2015) CO2 as an oxidant for high-temperature reactions. Front Energy Res 3:13. https://doi.org/10.3389/fenrg.2015.00013

    Article  Google Scholar 

  8. Wu H, Li Y, Liu H, He D (2019) High-pressure catalytic kinetics of CO2 reforming of methane over highly stable NiCo/SBA-15 catalyst. ES Energy Environ 3: 68–73 https://doi.org/10.30919/esee8c201

  9. Li D, Sun J, Ma R, Wei JJ (2020) High-efficient and low-cost H2 production by solar-driven photo-thermo-reforming of methanol with CuO catalyst. ES Energy Environ 9: 82–88 https://doi.org/10.30919/esee8c722

  10. Ansari MB, Park SE (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis Energy Environ Sci 5 https://doi.org/10.1039/c2ee22409g

  11. Wang SB, Murata K, Hayakawa T, Hamakawa S, Suzuki K (1999) Oxidative dehydrogenation of ethane with carbon dioxide over sulfated zirconia supported metal oxides catalysts. React Kinet Catal Lett 68:265–270. https://doi.org/10.1007/bf02475511

    Article  CAS  Google Scholar 

  12. Wang SB, Zhu ZH (2004) Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation - A review. Energy Fuels 18:1126–1139. https://doi.org/10.1021/ef0340716

    Article  CAS  Google Scholar 

  13. Bugrova TA, Dutov VV, Svetlichnyi VA, Cortés Corberán V, Mamontov GV (2019) Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catal Today 333:71–80. https://doi.org/10.1016/j.cattod.2018.04.047

    Article  CAS  Google Scholar 

  14. Bai PT, Manokaran V, Saiprasad PS, Srinath S (2015) Studies on heat and mass transfer limitations in oxidative dehydrogenation of ethane over Cr2O3/Al2O3 catalyst. In International Conference on Computational Heat and Mass Transfer, Srinivasacharya, D., Ed. Elsevier Science Bv: Amsterdam, Vol. 127, pp 1338–1345

  15. Bai PT, Srinath S, Upendar K, Sagar TV, Lingaiah N, Rao KSR, Prasad PSS (2017) Oxidative dehydrogenation of ethane with carbon dioxide over Cr2O3/SBA-15 catalysts: the influence of sulfate modification of the support. Appl Petrochem Res 7:107–118. https://doi.org/10.1007/s13203-017-0182-5

    Article  CAS  Google Scholar 

  16. Cheng Y, Zhang F, Zhang Y, Miao C, Hua W, Yue Y, Gao Z (2015) Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chin J Catal 36:1242–1248. https://doi.org/10.1016/S1872-2067(15)60893-2

    Article  CAS  Google Scholar 

  17. Theofanidis SA, Loizidis C, Heracleous E, Lemonidou AA (2020) CO2-oxidative ethane dehydrogenation over highly efficient carbon-resistant Fe-catalysts. J Catal 388:52–65. https://doi.org/10.1016/j.jcat.2020.05.004

    Article  CAS  Google Scholar 

  18. Chen K, Bell AT, Iglesia E (2002) The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. J Catal 209:35–42. https://doi.org/10.1006/jcat.2002.3620

    Article  CAS  Google Scholar 

  19. Mukherjee D, Park SE, Reddy BM (2016) CO2 as a soft oxidant for oxidative dehydrogenation reaction: An eco benign process for industry. J CO2 Util 16: 301–312 https://doi.org/10.1016/j.jcou.2016.08.005

  20. Jin L, Reutenauer J, Opembe N, Lai M, Martenak DJ, Han S, Suib SL (2009) Studies on dehydrogenation of ethane in the presence of CO2 over octahedral molecular sieve (OMS-2) catalysts. ChemCatChem 1:441–444. https://doi.org/10.1002/cctc.200900149

    Article  CAS  Google Scholar 

  21. Michorczyk P, Zenczak K, Niekurzak R, Ogonowski J (2012) Dehydrogenation of propane with CO2 - a new green process for propene and synthesis gas production. Pol J Chem Technol 14:77–82. https://doi.org/10.2478/v10026-012-0106-1

    Article  Google Scholar 

  22. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Omil JAP, Pintado JM (2003) Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect. Catal Today 77:385–406. https://doi.org/10.1016/s0920-5861(02)00382-6

    Article  CAS  Google Scholar 

  23. Ferreira AP, Zanchet D, Araujo JCS, Liberatori JWC, Souza-Aguiar EF, Noronha FB, Bueno JMC (2009) The effects of CeO2 on the activity and stability of Pt supported catalysts for methane reforming, as addressed by in situ temperature resolved XAFS and TEM analysis. J Catal 263:335–344. https://doi.org/10.1016/j.jcat.2009.02.026

    Article  CAS  Google Scholar 

  24. Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH (2009) MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction. J Catal 266:380–390. https://doi.org/10.1016/j.jcat.2009.07.004

    Article  CAS  Google Scholar 

  25. Toth A, Halasi G, Bansagi T, Solymosi F (2016) Reactions of propane with CO2 over Au catalysts. J Catal 337:57–64. https://doi.org/10.1016/j.jcat.2016.01.029

    Article  CAS  Google Scholar 

  26. Toth A, Halasi G, Solymosi F (2015) Reactions of ethane with CO2 over supported Au. J Catal 330:1–5. https://doi.org/10.1016/j.jcat.2015.07.006

    Article  CAS  Google Scholar 

  27. Nagaoka K, Seshan K, Lercher JA, Aika K (2000) Activation mechanism of methane-derived coke (CHx) by CO2 during dry reforming of methane - comparison for Pt/Al2O3 and Pt/ZrO2. Catal Lett 70:109–116. https://doi.org/10.1023/a:1018877032022

    Article  CAS  Google Scholar 

  28. Li X, Liu S, Chen H, Luo S-z, Jing F, Chu W (2019) Improved catalytic performance of ethane dehydrogenation in the presence of CO2 over Zr-promoted Cr/SiO2. ACS Omega 4:22562–22573. https://doi.org/10.1021/acsomega.9b03301

    Article  CAS  Google Scholar 

  29. Chen D, Cao YD, Weng D, Tuller HL (2014) Defect and transport model of ceria-zirconia solid solutions: Ce0.8Zr0.2O2-delta—an electrical conductivity study. Chem Mater 26:5143–5150. https://doi.org/10.1021/cm502565b

    Article  CAS  Google Scholar 

  30. Hori CE, Permana H, Ng KYS, Brenner A, More K, Rahmoeller KM, Belton D (1998) Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Appl Catal B: Environ 16:105–117. https://doi.org/10.1016/s0926-3373(97)00060-x

    Article  CAS  Google Scholar 

  31. Zhao MW, Shen MQ, Wang J (2007) Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J Catal 248:258–267. https://doi.org/10.1016/j.jcat.2007.03.005

    Article  CAS  Google Scholar 

  32. Ma Y, Ma M, Yin X, Shao Q, Lu N, Feng Y, Lu Y, Wujcik EK, Mai X, Wang C, Guo Z (2018) Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer 156:128–135. https://doi.org/10.1016/j.polymer.2018.09.051

    Article  CAS  Google Scholar 

  33. Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: Influence of dopants. Appl Catal B: Environ 197:105–115. https://doi.org/10.1016/j.apcatb.2016.03.042

    Article  CAS  Google Scholar 

  34. Piumetti M, Bensaid S, Russo N, Fino D (2016) Investigations into nanostructured ceria-zirconia catalysts for soot combustion. Appl Catal B: Environ 180:271–282. https://doi.org/10.1016/j.apcatb.2015.06.018

    Article  CAS  Google Scholar 

  35. Gonzalez-Velasco JR, Gutierrez-Ortiz MA, Marc JL, Botas JA, Gonzalez-Marcos MP, Blanchard G (1999) Contribution of cerium/zirconium mixed oxides to the activity of a new generation of TWC. Appl Catal B: Environ 22:167–178. https://doi.org/10.1016/s0926-3373(99)00054-5

    Article  CAS  Google Scholar 

  36. Atribak I, Bueno-Lopez A, Garcia-Garcia A (2008) Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. J Catal 259:123–132. https://doi.org/10.1016/j.jcat.2008.07.016

    Article  CAS  Google Scholar 

  37. Kalamaras CM, Dionysiou DD, Efstathiou AM (2012) Mechanistic studies of the water-gas shift reaction over Pt/CexZr1-xO2 catalysts: the effect of Pt particle size and Zr dopant. ACS Catal 2:2729–2742. https://doi.org/10.1021/cs3006204

    Article  CAS  Google Scholar 

  38. Jeong DW, Potdar HS, Roh HS (2012) Comparative study on nano-sized 1 wt% Pt/Ce0.8Zr0.2O2 and 1 wt% Pt/Ce0.2Zr0.8O2 catalysts for a single stage water gas shift reaction. Catal Lett 142:439–444. https://doi.org/10.1007/s10562-012-0786-4

    Article  CAS  Google Scholar 

  39. Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S (2006) Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2. Fuel 85:323–332. https://doi.org/10.1016/j.fuel.2005.06.013

    Article  CAS  Google Scholar 

  40. Staudt T, Lykhach Y, Tsud N, Skala T, Prince KC, Matolin V, Libuda J (2010) Ceria reoxidation by CO2: A model study. J Catal 275:181–185. https://doi.org/10.1016/j.jcat.2010.07.032

    Article  CAS  Google Scholar 

  41. Valenzuela RX, Bueno G, Corberan VC, Xu YD, Chen CL (2000) Selective oxidehydrogenation of ethane with CO2 over CeO2-based catalysts. Catal Today 61:43–48. https://doi.org/10.1016/s0920-5861(00)00366-7

    Article  CAS  Google Scholar 

  42. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, lin J, Dong M, Wu S, Ding T, Guo Z, (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808. https://doi.org/10.1016/j.polymer.2019.121808

    Article  CAS  Google Scholar 

  43. Jing F, Katryniok B, Dumeignil F, Bordes-Richard E, Paul S (2014) Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. J Catal 309:121–135. https://doi.org/10.1016/j.jcat.2013.09.014

    Article  CAS  Google Scholar 

  44. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  45. Biesinger MC, Brown C, Mycroft JR, Davidson RD, McIntyre NS (2004) X-ray photoelectron spectroscopy studies of chromium compounds. Surf Interface Anal 36:1550–1563. https://doi.org/10.1002/sia.1983

    Article  CAS  Google Scholar 

  46. Beche E, Peraudeau G, Flaud V, Perarnau D (2012) An XPS investigation of (La2O3)1–x (CeO2)2x (ZrO2)2 compounds. Surf Interface Anal 44:1045–1050. https://doi.org/10.1002/sia.4887

    Article  CAS  Google Scholar 

  47. Myint M, Yan B, Wan J, Zhao S, Chen JG (2016) Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts. J Catal 343:168–177. https://doi.org/10.1016/j.jcat.2016.02.004

    Article  CAS  Google Scholar 

  48. Jing F, Katryniok B, Paul S, Fang L, Liebens A, Shen M, Hu B, Dumeignil F, Pera-Titus M (2017) Al-doped SBA-15 catalysts for low-temperature dehydration of 1,3-butanediol into butadiene. ChemCatChem 9:258–262. https://doi.org/10.1002/cctc.201601202

    Article  CAS  Google Scholar 

  49. Yang XY, Cheng XW, Ma JH, Zou YD, Luo W, Deng YH (2019) Large-pore mesoporous CeO2-ZrO2 solid solutions with in-pore confined Pt nanoparticles for enhanced CO oxidation. Small 15:12. https://doi.org/10.1002/smll.201903058

    Article  CAS  Google Scholar 

  50. Cheng Y, Miao C, Hua W, Yue Y, Gao Z (2017) Cr/ZSM-5 for ethane dehydrogenation: enhanced catalytic activity through surface silanol. Appl Catal A: Gen 532:111–119. https://doi.org/10.1016/j.apcata.2016.12.025

    Article  CAS  Google Scholar 

  51. Sugiura M (2003) Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catal Surv Asia 7:77–87. https://doi.org/10.1023/a:1023488709527

    Article  CAS  Google Scholar 

  52. Allen C, Curtis MT, Hooper AJ, Tucker PM (1973) X-Ray photoelectron spectroscopy of chromium–oxygen systems. J Chem Soc, Dalton Trans 1675–1683

  53. Wang YJ, Zheng YN, Wang YH, Li KZ, Wang YM, Jiang LH, Zhu X, Wei YG, Wang H (2019) Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane. Appl Surf Sci 481:151–160. https://doi.org/10.1016/j.apsusc.2019.03.050

    Article  CAS  Google Scholar 

  54. Jing F, Liu S, Wang R, Li X, Yan Z, Luo S, Chu W (2020) Hydrogen production through glycerol steam reforming over the NiCexAl catalysts. Renew Energy 158:192–201. https://doi.org/10.1016/j.renene.2020.05.044

    Article  CAS  Google Scholar 

  55. Wang B, Xiong Y, Han Y, Hong J, Zhang Y, Li J, Jing F, Chu W (2019) Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming. Appl Catal B: Environ 249:257–265. https://doi.org/10.1016/j.apcatb.2019.02.074

    Article  CAS  Google Scholar 

  56. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  57. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ 8: 65–77 https://doi.org/10.30919/esee8c415

  58. Liu ZQ, Li JH, Buettner M, Ranganathan RV, Uddi M, Wang RG (2019) Metal-support interactions in CeO2- and SiO2-supported cobalt catalysts: effect of support morphology, reducibility, and interfacial configuration. ACS Appl Mater Interfaces 11:17035–17049. https://doi.org/10.1021/acsami.9b02455

    Article  CAS  Google Scholar 

  59. Zhao YT, Lu JC, Chen DK, Zhang LM, He SF, Han CY, He DD, Luo YM (2019) Probing the nature of active chromium species and promotional effects of potassium in Cr/MCM-41 catalysts for methyl mercaptan abatement. New J Chem 43:12814–12822. https://doi.org/10.1039/c9nj02858g

    Article  CAS  Google Scholar 

  60. Aw MS, Crnivec IGO, Pintar A (2014) Tunable ceria-zirconia support for nickel-cobalt catalyst in the enhancement of methane dry reforming with carbon dioxide. Catal Commun 52:10–15. https://doi.org/10.1016/j.catcom.2014.04.001

    Article  CAS  Google Scholar 

  61. Wang Y, Huang WY, Chun Y, Xia JR, Zhu JH (2001) Dispersion of Potassium Nitrate and the Resulting Strong Basicity on Zirconia. Chem Mater 13:670–677. https://doi.org/10.1021/cm000213n

    Article  CAS  Google Scholar 

  62. Fang W, Pirez C, Paul S, Capron M, Jobic H, Dumeignil F, Jalowiecki-Duhamel L (2013) Room temperature hydrogen production from ethanol over CeNiXHZOY nano-oxyhydride catalysts. ChemCatChem 5:2207–2216. https://doi.org/10.1002/cctc.201300087

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by theNational Natural Science Foundation of China (NSFC, grant number [21603153]) and the Science and Technology Department of Sichuan Province (grant number [2016HH0026]). F. Jing also thanked the support from “The 1000 talent plan” of Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizhong Luo or Fangli Jing.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, L., Luo, S. et al. The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene. Adv Compos Hybrid Mater 4, 793–805 (2021). https://doi.org/10.1007/s42114-021-00280-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00280-7

Keywords

Navigation