Skip to main content
Log in

Shape memory polymer solar cells with active deformation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The reliable and lightweight deployable solar arrays require the capability of large deformation for packaging and the ability to actively deform for deployment. To satisfy such demands, the shape memory polymer solar cells (SMPSCs) are fabricated and demonstrated in this paper by using flexible and conductive silver nanowire/shape memory copolyamide (AgNW/SMPI) composite film as the transparent substrates. The AgNW/SMPI composite film has good optical transparency (~73% at the wavelength of 450 ~ 1100 nm), smooth surfaces (average RMS: ~3.32 nm), good shape memory performances (shape fixation ratio > 98%, shape recovery ratio > 98%), and can maintain excellent conductivity (~10Ω/□) after mechanical deformations with large strain. Owing to the shape memory effect of the substrate, SMPSCs can be deformed into arbitrary shape and actively recover to the original shape upon heating. The power conversion efficiency of SMPSC (2.94%) is lower than that of ITO-based solar cells with the same structure (3.44%), due to the relatively lower optical transparency of SMPI. However, SMPSCs can maintain good photovoltaic performances after 50 bending-recovery cycles or few shape recovery cycles, demonstrating better flexibility and durability than ITO-based solar cells. The SMPSCs have the potential to be used in deployable solar arrays, and the transparent conductive SMPI film electrodes have the potential to be used in areas of sensors, medical probes, and displays.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data are available from the authors upon reasonable request.

References

  1. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001

    CAS  Google Scholar 

  2. Gao H, Lan X, Liu L, Xiao X, Liu Y, Leng J (2017) Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments. Smart Mater Struct 26:095001

    Google Scholar 

  3. Gao H, Xie F, Liu Y, Leng J (2018) Effects of γ-radiation on the performances of optically transparent shape memory polyimides with a low glass transition temperature. Polym Degrad Stab 156:245–251

    CAS  Google Scholar 

  4. Gall K, Yakacki CM, Liu Y, Shandas R, Willett N, Anseth KS (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A 73:339–348

    Google Scholar 

  5. Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105

    Google Scholar 

  6. Luo X, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:2146–2149

    CAS  Google Scholar 

  7. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103:3540–3545

    CAS  Google Scholar 

  8. Small W IV, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213

    Google Scholar 

  9. Li W, Liu Y, Leng J (2015) Selectively actuated multi-shape memory effect of a polymer multicomposite. J Mater Chem A 3:24532–24539

    CAS  Google Scholar 

  10. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28

    CAS  Google Scholar 

  11. Wang W, Shen R, Cui H, Cui Z, Liu Y (2020) Two-stage reactive shape memory thiol-epoxy-acrylate system and application in 3D structure design. Adv Compos Hybrid Mater 3:41–48

    Google Scholar 

  12. Lai H, Shang Y, Cheng Z, Lv T, Zhang E, Zhang D, Wang J, Liu Y (2019) Control of tip nanostructure on superhydrophobic shape memory arrays toward reversibly adjusting water adhesion. Adv Compos Hybrid Mater 2:753–762

    CAS  Google Scholar 

  13. Reeder J, Kaltenbrunner M, Ware T, Arreaga-Salas D, Avendano-Bolivar A, Yokota T, Inoue Y, Sekino M, Voit W, Sekitani T, Someya T (2014) Mechanically adaptive organic transistors for implantable electronics. Adv Mater 26:4967–4973

    CAS  Google Scholar 

  14. Gao H, Li J, Zhang F, Liu Y, Leng J (2019) The research status and challenges of shape memory polymer-based flexible electronics. Mater Horiz 6:931–944

    CAS  Google Scholar 

  15. Avendano-Bolivar A, Ware T, Arreaga-Salas D, Simon D, Voit W (2013) Mechanical cycling stability of organic thin film transistors on shape memory polymers. Adv Mater 25:3095–3099

    CAS  Google Scholar 

  16. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    CAS  Google Scholar 

  17. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739

    CAS  Google Scholar 

  18. Li Z, Liu Y, Zhang K, Wang Z, Huang P, Li D, Zhou Y, Song B (2017) Chemical modification of n-type-material naphthalene diimide on ITO for efficient and stable inverted polymer solar cells. Langmuir 33:8679–8685

    CAS  Google Scholar 

  19. Gong X, Yang Z, Walters G, Comin R, Ning Z, Beauregard E, Adinolfi V, Voznyy O, Sargent EH (2016) Highly efficient quantum dot near-infrared light-emitting diodes. Nat Photonics 10:253–257

    CAS  Google Scholar 

  20. Jang J, Kitsomboonloha R, Swisher SL, Park ES, Kang H, Subramanian V (2013) transparent high-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors. Adv Mater 25:1042–1047

    CAS  Google Scholar 

  21. Miller MS, O’Kane JC, Niec A, Carmichael RS, Carmichael TB (2013) Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl Mater Interfaces 5:10165–10172

    CAS  Google Scholar 

  22. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    CAS  Google Scholar 

  23. Becerril HA, Stoltenberg RM, Tang ML, Roberts ME, Liu Z, Chen Y, Kim DH, Lee BL, Lee S, Bao Z (2010) Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p-and n-channel bottom-contact organic thin-film transistors. ACS Nano 4:6343–6352

    CAS  Google Scholar 

  24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    CAS  Google Scholar 

  25. Nikolou M, Dyer AL, Steckler TT, Donoghue EP, Wu Z, Heston NC, Rinzler AG, Tanner DB, Reynolds JR (2009) Dual n-and p-type dopable electrochromic devices employing transparent carbon nanotube electrodes. Chem Mater 21:5539–5547

    CAS  Google Scholar 

  26. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    CAS  Google Scholar 

  27. Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477

    CAS  Google Scholar 

  28. Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron 10:761–768

    CAS  Google Scholar 

  29. Galagan Y, Rubingh JEJ, Andriessen R, Fan CC, Blom PW, Veenstra SC, Kroon JM (2011) ITO-free flexible organic solar cells with printed current collecting grids. Sol Energy Mater Sol Cells 95:1339–1343

    CAS  Google Scholar 

  30. Kang MG, Kim MS, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20:4408–4413

    CAS  Google Scholar 

  31. Ghosh DS, Chen TL, Mkhitaryan V, Pruneri V (2014) Ultrathin transparent conductive polyimide foil embedding silver nanowires. ACS Appl Mater Interfaces 6:20943–20948

    CAS  Google Scholar 

  32. Yu Z, Li L, Zhang Q, Hu W, Pei Q (2011) Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv Mater 23:4453–4457

    CAS  Google Scholar 

  33. Schubert S, Kim YH, Menke T, Fischer A, Timmreck R, Müller-Meskamp L, Leo K (2013) Highly doped fullerene C60 thin films as transparent stand alone top electrode for organic solar cells. Sol Energy Mater Sol Cells 118:165–170

    CAS  Google Scholar 

  34. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910

    CAS  Google Scholar 

  35. Chen TL, Ghosh DS, Mkhitaryan V, Pruneri V (2013) Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl Mater Interfaces 5:11756–11761

    CAS  Google Scholar 

  36. Zou J, Yip H, Hau SK, Jen AK (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Lett 96:203301

    Google Scholar 

  37. Yang L, Zhang T, Zhou H, Price SC, Wiley BJ, You W (2011) Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Interfaces 3:4075–4084

    CAS  Google Scholar 

  38. Lee J, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    CAS  Google Scholar 

  39. Liu CH, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 6:75

    Google Scholar 

  40. Hu L, Kim HS, Lee J, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963

    CAS  Google Scholar 

  41. Scardaci V, Coull R, Lyons PE, Rickard D, Coleman JN (2011) Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7:2621–2628

    CAS  Google Scholar 

  42. Akter T, Kim WS (2012) Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces 4:1855–1859

    CAS  Google Scholar 

  43. Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332

    CAS  Google Scholar 

  44. Kim Y, Ryu TI, Ok KH, Kwak MG, Park S, Park NG, Han CJ, Kim BS, Ko MJ, Son HJ, Kim JW (2015) Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater 25:4580–4589

    CAS  Google Scholar 

  45. Jiang Y, Xi J, Wu Z, Dong H, Zhao Z, Jiao B, Hou X (2015) Highly transparent, conductive, flexible resin films embedded with silver nanowires. Langmuir 31:4950–4957

    CAS  Google Scholar 

  46. Kong D, Li J, Guo A, Zhang X, Xiao X (2019) Self-healing high temperature shape memory polymer. Eur Polym J 120:109279

    Google Scholar 

  47. Kong D, Li J, Guo A, Yu J, Xiao X (2021) Smart polyimide with recovery stress at the level of high temperature shape memory alloys. Smart Mater Struct 30:035027

    CAS  Google Scholar 

  48. Kong D, Li J, Guo A, Xiao X (2021) High temperature electromagnetic shielding shape memory polymer composite. Chem Eng J 408:127365

    CAS  Google Scholar 

  49. Song P, Liu B, Qiu H, Shi X, Cao D, Gu J (2021) MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos Commun 24:100653

    Google Scholar 

  50. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518

    Google Scholar 

  51. Zhao J, Zhang J, Wang L, Li J, Feng T, Fan J, Chen L, Gu J (2020) Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos Commun 22:100486

    Google Scholar 

  52. Shi X, Zhang R, Ruan K, Ma T, Guo Y, Gu J (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Technol 82:239–249

    Google Scholar 

  53. Han Y, Shi X, Wang S, Ruan K, Chuyao Lu, Guo Y, Junwei Gu (2021) Nest-like hetero-structured BNNS@SiCnws fillers and significant improvement on thermal conductivities of epoxy composites. Compos Part B Eng 210:108666

    CAS  Google Scholar 

  54. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4: 36-50

    Article  Google Scholar 

  55. Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7:10214

    CAS  Google Scholar 

  56. Roldan-Carmona C, Malinkiewicz O, Soriano A, Espallargas GM, Garcia A, Reinecke P, Kroyer T, Dar MI, Nazeeruddine MK, Bolink HJ (2014) Flexible high efficiency perovskite solar cells. Energy Environ Sci 7:994–997

    CAS  Google Scholar 

  57. Jia C, Zhao X, Lai YH, Zhao J, Wang PC, Liou DS, Wang P, Liu Z, Zhang W, Chen W, Chu YH, Li J (2019) Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy 60:476–484

    CAS  Google Scholar 

  58. Wang C, Zhang X, Li M (2013) Effects of temperature on performance of organic solar cells based on P3HT/PCBM. Chin J Power Sources 37:1588–1590

    CAS  Google Scholar 

  59. Thompson BC, Fréchet JM (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11632005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Leng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2958 KB)

Supplementary file2 (DOCX 2570 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Li, J., Liu, Y. et al. Shape memory polymer solar cells with active deformation. Adv Compos Hybrid Mater 4, 957–965 (2021). https://doi.org/10.1007/s42114-021-00263-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00263-8

Keywords

Navigation