Skip to main content
Log in

Strain engineering on electrocaloric effect in PbTiO3 and BaTiO3

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In isothermal processes, applying the electric field to ferroelectric materials will cause the vibrational entropy change (ΔSvib) along with the corresponding adiabatic temperature change (ΔTvib) induced by the intrinsic structure response, i.e., part of the electrocaloric effect (ECE). Most previous investigations only focused on the total ECE in different materials, but we found that strain engineering can regulate the ECE significantly in the typical ferroelectrics PbTiO3 and BaTiO3. In this paper, ΔSvib and ΔTvib in PbTiO3 and BaTiO3 are extracted using first-principles calculations and the effects of strains on the ECE are then studied. The results show that the isotropic compressive and tensile strains of up to 5% could regulate the thermodynamic properties of these materials effectively. Additionally, we find that compression can cause a positive ECE, while tension can cause a negative ECE, which is further verified by the change of Born effective charge. The calculations are accelerated (> 4×) by graphics processing units (GPUs) using the Compute Unified Device Architecture (CUDA). This method thus provides a new strategy for the regulation of ΔSvib in the ECE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou Y, Wu S, Ma Y, Zhang H, Zeng X, Wu F, Liu F, Ryu JE, Guo Z (2020) Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ. https://doi.org/10.30919/esee8c150

  2. Zhen Y-X, Yang M, Zhang H, Fu G-S, Wang J-L, Wang S-F, Wang R-N (2017) Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Sci Bull 62(22):1530–1537. https://doi.org/10.1016/j.scib.2017.10.022

    Article  CAS  Google Scholar 

  3. Zhao S, Wang HW (2020) An integrated h-type method to measure thermoelectric properties of two-dimensional materials. ES Energy Environ. https://doi.org/10.30919/esee8c262

  4. He Z, Foo M-X, Yong D, Ma T, Hao Y, Zhang H, Ding D (2019) Non-Imaging Optics for Improving Waste Heat Collection with Thermoelectrics. ES Energy Environ. https://doi.org/10.30919/esee8c335

  5. Shi J, Han D, Li Z, Yang L, Lu S, Zhong Z, Chen J, Zhang Q, Qian X (2019) Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3(5):1200–1225. https://doi.org/10.1016/j.joule.2019.03.021

    Article  Google Scholar 

  6. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311 (5765):1270-1271. https://doi.org/10.1126/science.1123811

  7. Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823. https://doi.org/10.1126/science.1159655

    Article  CAS  Google Scholar 

  8. Luo Z, Zhang D, Liu Y, Zhou D, Yao Y, Liu C, Dkhil B, Ren X, Lou X (2014) Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl Phys Lett 105(10):102904. https://doi.org/10.1063/1.4895615

    Article  CAS  Google Scholar 

  9. Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X (2012) Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. Europhys Lett 98(2):27008. https://doi.org/10.1209/0295-5075/98/27008

    Article  CAS  Google Scholar 

  10. Li J, Chang Y, Yang S, Tian Y, Hu Q, Zhuang Y, Xu Z, Li F (2019) Lead-free bilayer thick films with giant electrocaloric effect near room temperature. Acs Appl Mater Interfaces 11(26):23346–23352. https://doi.org/10.1021/acsami.9b06279

    Article  CAS  Google Scholar 

  11. Scott JF (2011) Electrocaloric materials. Ann Rev Mater Res 41(1):229–240. https://doi.org/10.1146/annurev-matsci-062910-100341

    Article  CAS  Google Scholar 

  12. Li X, Lu S, Chen X, Gu H, Qian X, Zhang QM (2013) Pyroelectric and electrocaloric materials. J Mater Chem C 1(1):23–37. https://doi.org/10.1039/c2tc00283c

    Article  CAS  Google Scholar 

  13. Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin LW (2018) Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17(5):432–438. https://doi.org/10.1038/s41563-018-0059-8

    Article  CAS  Google Scholar 

  14. Pandya S, Wilbur JD, Bhatia B, Damodaran AR, Monachon C, Dasgupta A, King WP, Dames C, Martin LW (2017) Direct measurement of pyroelectric and electrocaloric effects in thin films. Phys Rev Appl 7 (3). https://doi.org/10.1103/PhysRevApplied.7.034025

  15. Marathe M, Grunebohm A, Nishimatsu T, Ente P, Ederer C (2016) First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys Rev B. https://doi.org/10.1103/PhysRevB.93.054110

    Article  Google Scholar 

  16. Nishimatsu TA, Barr JP, Beckman S (2013) Direct molecular dynamics simulation of electrocaloric effect in BaTiO3. J Phys Soc Japan 82(11):114605. https://doi.org/10.7566/jpsj.82.114605

    Article  Google Scholar 

  17. Beckman SP, Wan LF, Barr JA, Nishimatsu T (2012) Effective Hamiltonian methods for predicting the electrocaloric behavior of BaTiO3. Mater Lett 89:254–257. https://doi.org/10.1016/j.matlet.2012.08.102

    Article  CAS  Google Scholar 

  18. Marathe M, Ederer C (2014) Electrocaloric effect in BaTiO3: a first-principles-based study on the effect of misfit strain. Appl Phys Lett 104(21):212902. https://doi.org/10.1063/1.4879840

    Article  CAS  Google Scholar 

  19. Barr JA, Beckman SP (2015) Electrocaloric response of KNbO3 from a first-principles effective Hamiltonian. Mater Sci Eng B 196:40–43. https://doi.org/10.1016/j.mseb.2015.02.004

    Article  CAS  Google Scholar 

  20. Tarnaoui M, Zaim N, Kerouad M, Zaim A (2020) Elastic, electronic and electrocaloric properties near room temperature in Mn-doped SnTiO3 from first-principles calculations. Ceram Int 46(14):21995–22004. https://doi.org/10.1016/j.ceramint.2020.05.147

    Article  CAS  Google Scholar 

  21. Lisenkov S, Ponomareva I (2009) Intrinsic electrocaloric effect in ferroelectric alloys from atomistic simulations. Phys Rev B 80(14). https://doi.org/10.1103/PhysRevB.80.140102

  22. Ponomareva I, Lisenkov S (2012) Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett 108(16):167604. https://doi.org/10.1103/PhysRevLett.108.167604

    Article  CAS  Google Scholar 

  23. Jiang Z, Prokhorenko S, Prosandeev S, Nahas Y, Wang D, Íñiguez J, Defay E, Bellaiche L (2017) Electrocaloric effects in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric from atomistic simulations. Phys Rev B 96(1). https://doi.org/10.1103/PhysRevB.96.014114

  24. Jiang Z, Nahas Y, Prokhorenko S, Prosandeev S, Wang D, Íñiguez J, Bellaiche L (2018) Giant electrocaloric response in the prototypical Pb(Mg,Nb)O3 relaxor ferroelectric from atomistic simulations. Phys Rev B 97(10). https://doi.org/10.1103/PhysRevB.97.104110

  25. Herchig R, Chang CM, Mani BK, Ponomareva I (2015) Electrocaloric effect in ferroelectric nanowires from atomistic simulations. Sci Rep 5(1). https://doi.org/10.1038/srep17294

  26. Jouzdani P, Cuozzo S, Lisenkov S, Ponomareva I (2017) Enhancement of electrocaloric response through quantum effects. Phys Rev B 96(21). https://doi.org/10.1103/PhysRevB.96.214107

  27. Lisenkov S, Ponomareva I (2018) High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations. Phys Rev B 97(18). https://doi.org/10.1103/PhysRevB.97.184104

  28. Prosandeev S, Ponomareva I, Bellaiche L (2008) Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles. Phys Rev B 78(5). https://doi.org/10.1103/PhysRevB.78.052103

  29. Liu C, Si W, Wu C, Yang J, Chen Y, Dames C (2020) The ignored effects of vibrational entropy and electrocaloric effect in PbTiO3 and PbZr0.5Ti0.5O3 as studied through first-principles calculation. Acta Mater 191:221–229. https://doi.org/10.1016/j.actamat.2020.03.059

    Article  CAS  Google Scholar 

  30. Liu C, Chen Y, Dames C (2019) Electric-field-controlled thermal switch in ferroelectric materials using first-principles calculations and domain-wall engineering. Phys Rev Appl 11(4). https://doi.org/10.1103/PhysRevApplied.11.044002

  31. Liu C, Mishra V, Chen Y, Dames C (2018) Large thermal conductivity switch ratio in barium titanate under electric field through first-principles calculation. Adv Theory Simul 1(12):1800098. https://doi.org/10.1002/adts.201800098

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  33. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  34. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  35. Creutz M (1983) Microcanonical Monte Carlo simulation. Phys Rev Lett 50(19):1411–1414. https://doi.org/10.1103/PhysRevLett.50.1411

    Article  Google Scholar 

  36. Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci 29(2):165–178. https://doi.org/10.1016/j.commatsci.2003.08.036

    Article  CAS  Google Scholar 

  37. Benisek A, Dachs E (2015) The vibrational and configurational entropy of disordering in Cu3Au. J Alloys Compd 632:585–590. https://doi.org/10.1016/j.jallcom.2014.12.215

    Article  CAS  Google Scholar 

  38. Rossetti GA, Maffei N (2005) Specific heat study and Landau analysis of the phase transition in PbTiO3 single crystals. J Phys Condens Matter 17(25):3953–3963. https://doi.org/10.1088/0953-8984/17/25/021

    Article  CAS  Google Scholar 

  39. Todd SS, Lorenson RE (1952) Heat capacities at low temperatures and entropies at 298.16°K. of Metatitanates of Barium and Strontium. J Am Chem Soc 74(8):2043-2045. https://doi.org/10.1021/ja01128a054

  40. Tomeno I, Ishii Y, Tsunoda Y, Oka K (2006) Lattice dynamics of tetragonal PbTiO3. Phys Rev B 73(6). https://doi.org/10.1103/PhysRevB.73.064116

  41. Bai Y, Zheng G, Shi S (2010) Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Appl Phys Lett 96(19):192902. https://doi.org/10.1063/1.3430045

    Article  CAS  Google Scholar 

  42. Kar-Narayan S, Mathur ND (2010) Direct and indirect electrocaloric measurements using multilayer capacitors. J Phys D Appl Phys 43(3):032002. https://doi.org/10.1088/0022-3727/43/3/032002

    Article  CAS  Google Scholar 

  43. Li B, Zhang X, Wang JB, Zhong XL, Wang F, Zhou YC (2014) Giant electrocaloric effect of PbTiO3 thin film tuned in a wide temperature range by the anisotropic misfit strain. Mech Res Commun 55:40–44. https://doi.org/10.1016/j.mechrescom.2013.10.016

    Article  Google Scholar 

  44. Wang F, Li B, Ou Y, Liu LF, Peng CZ, Wang ZS, Wang W (2016) Giant room temperature elastocaloric effect of PbTiO3 ferroelectric materials with 90° domain structure. RSC Advances 6(74):70557–70562. https://doi.org/10.1039/c6ra13030e

    Article  CAS  Google Scholar 

  45. Ghosez P, Cockayne E, Waghmare UV, Rabe KM (1999) Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: a comparative first-principles study. Phys Rev B 60(2):836–843. https://doi.org/10.1103/PhysRevB.60.836

    Article  CAS  Google Scholar 

  46. Kamruzzaman M, Helal MA, Ara IE, Islam AF, Rahaman MM (2016) A comparative study based on the first principles calculations of ATiO3 (A = Ba, Ca, Pb and Sr) perovskite structure. Indian J Phys 90(10):1105–1113. https://doi.org/10.1007/s12648-016-0848-3

    Article  CAS  Google Scholar 

  47. Horikawa T, Mikami N, Ito H, Ohno Y, Makita T, Sato K (1994) (Ba0.75Sr0.25)TiO3 films for 256 Mbit DRAM. IEICE Trans Electron E77–C (3):385-391

  48. Togo A, Chaput L, Tanaka I (2015) Distributions of phonon lifetimes in Brillouin zones. Phys Rev B 91(9). https://doi.org/10.1103/PhysRevB.91.094306

  49. Łodziana Z, Parliński K (2003) Dynamical stability of the α and θ phases of alumina. Phys Rev B 67(17). https://doi.org/10.1103/PhysRevB.67.174106

  50. Gonze X, Charlier J, Allan DC, Teter MP (1994) Interatomic force constants from first principles: the case of α-quartz. Phys Rev B Condens Matter 50(17):13035–13038. https://doi.org/10.1103/physrevb.50.13035

    Article  CAS  Google Scholar 

  51. Xie L (2012) Electron microscopic investigations and first-principles calculations of typical barium-based ferroelectrics and relaxor ferroelectrics. Dissertation, Tsinghua University

Download references

Acknowledgements

We thank Dr. Peng Chen and Prof. Sandong Guo for insightful discussions and David MacDonald for editing the English text of a draft of this manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (No. 51888103, No. 51606192) and the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, M. & Zhang, H. Strain engineering on electrocaloric effect in PbTiO3 and BaTiO3. Adv Compos Hybrid Mater 4, 1239–1247 (2021). https://doi.org/10.1007/s42114-021-00257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00257-6

Keywords

Navigation