Skip to main content

Advertisement

Log in

Vulnerability Assessment of Wheat Yield Under Warming Climate in Northern India Using Multi-model Projections

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Climate change impact on crop production using different climate model projections varies considerably and it is challenging to choose a suitable climate scenario for risk assessment. This study aims to assess the climate change impact on the wheat crop in nine agro-climatic zones (ACZs) of Uttar Pradesh (UP) in Northern India using the CERES-Wheat crop model, driven by high resolution projected climate from different regional climate models (RCMs). The results show that the vegetative growth period would be shortened across the ACZs and scenarios where higher reductions will be witnessed under RCP 8.5 viz., up to 10 days in the 2050s (2040–2069), and 14 days in the 2080s (2070–2099). Also, in the 2080s shortening up to 17 days will be observed in the total growth period under RCP 8.5. When elevated CO2 concentration was not considered the wheat yields were found to reduce up to 20.5 and 30% under RCP 4.5 and RCP 8.5, respectively, in the 2050s. In the 2080s, the losses will be more pronounced reaching up to 41.5% under RCP 8.5. With the consideration of CO2, the yield reductions will be up to 14 and 18% under RCP 4.5 and RCP 8.5 respectively in the 2080s. Uncertainty associated with climate model revealed that ACCESS 1-0 and MPI-ESM-LR predicted higher mean yield reductions while CNRM-CM5 has shown a mild effect. Present study concluded that eastern UP is a vulnerable region for wheat production in the 21st century. The results suggest that there is an urgent need for developing suitable adaptation strategies to ameliorate the adverse effects on wheat production in UP through regional policy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Authors declare that all data and materials support their published claims and comply with field standards. Authors promote data transparency and agree to provide in case of a request from the journal.

References

  • Aggarwal, P. K., & Sivakumar, M. V. K. (2010). Global climate change and food security in South Asia: An adaptation and mitigation framework. In R. Lal, M. Sivakumar, S. Faiz, R. A. Mustafizur, & K. Islam (Eds.), Climate change and food security in South Asia. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-9516-9_16

    Chapter  Google Scholar 

  • Agrometeorological Forecasting Unit (AMFU). Annual progress report (2019–2020), Banaras Hindu University, Varanasi

  • Akter, N., & Islam, M. R. (2017). Heat stress effects and management in wheat a review. Agronomy for Sustainable Development, 37(5), 1–17. https://doi.org/10.1007/s13593-017-0443-9

    Article  CAS  Google Scholar 

  • Alghabari, F., Lukac, M., Jones, H. E., & Gooding, M. J. (2014). Effect of R ht alleles on the tolerance of wheat grain set to high temperature and drought stress during booting and anthesis. Journal of Agronomy & Crop Science, 200(1), 36–45. https://doi.org/10.1111/jac.12038

    Article  CAS  Google Scholar 

  • Amthor, J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, 73(1), 1–34. https://doi.org/10.1016/S0378-4290(01)00179-4

    Article  Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., & Reynolds, M. P. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470

    Article  Google Scholar 

  • Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., & Brisson, N. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916

    Article  CAS  Google Scholar 

  • Asseng, S., Foster, I. A. N., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x

    Article  Google Scholar 

  • Basso, B., Liu, L., & Ritchie, J. T. (2016). A comprehensive review of the CERES-wheat-maize and-rice models’ performances. Advances in Agronomy, 136, 27–132. https://doi.org/10.1016/BS.AGRON.2015.11.004

    Article  Google Scholar 

  • Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The norwegian earth system model, NorESM1-M–part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Bhatt, D., Sonkar, G., & Mall, R. K. (2019). Impact of climate variability on the rice yield in Uttar Pradesh: An agro-climatic zone-based study. Environmental Processes, 6(1), 135–153. https://doi.org/10.1007/s40710-019-00360-3

    Article  Google Scholar 

  • Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Puri, K. (2013). The ACCESS coupled model: description, control climate and preliminary validation. Australian Meteorological Oceanographic Journal, 63, 41–64

  • Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., & Wollenberg, E. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43. https://doi.org/10.1016/j.gfs.2016.06.002

    Article  Google Scholar 

  • Chakrabarti, B., Bhatia, A., Pramanik, P., Singh, S. D., Jatav, R. S., Saha, N. D., & Kumar, V. (2021). Changes in thermal requirements, growth and yield of wheat under the elevated temperature. The Indian Journal of Agricultural Sciences, 91(3), 435–439.

    Google Scholar 

  • Collier, M., Uhe, P. (2012). CMIP5 datasets from the ACCESS1.0 and ACCESS1.3 coupled climate models. CAWCR Tech. Rep 059. 20978-1-922173-29-4

  • Daloz, A. S., Rydsaa, J. H., Hodnebrog, Ø., Sillmann, J., van Oort, B., Mohr, C. W., & Zhang, T. (2021). Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. Journal of Agriculture & Food Research, 4, 100132. https://doi.org/10.1016/j.jafr.2021.100132

    Article  Google Scholar 

  • DES (2021). Pocket book of agricultural statistics 2020. Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India New Delhi. https://eands.dacnet.nic.in/PDF/Pocket%202020-%20Final%20web%20file.pdf. Accessed 25 Jul 2021

  • Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate Dynamics, 38(3–4), 527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Dhungana, P., Eskridge, K. M., Weiss, A., & Baenziger, P. S. (2006). Designing crop technology for a future climate: An example using response surface methodology and the CERES-Wheat model. Agricultural Systems, 87(1), 63–79. https://doi.org/10.1016/j.agsy.2004.11.004

    Article  Google Scholar 

  • Dhyani, K., Ansari, M. W., Rao, Y. R., Verma, R. S., Shukla, A., & Tuteja, N. (2013). Comparative physiological response of wheat genotypes under terminal heat stress. Plant Signaling & Behavior, 8(6), e24564. https://doi.org/10.4161/psb.24564

    Article  CAS  Google Scholar 

  • Dubey, R., Pathak, H., Chakrabarti, B., Singh, S., Gupta, D. K., & Harit, R. C. (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems, 181, 102826. https://doi.org/10.1016/j.agsy.2020.102826

    Article  Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507.

    Article  Google Scholar 

  • Giorgetta, M. A., et al. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPIESM simulations for the coupled model intercomparison project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(3), 225–230.

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99.

    Article  Google Scholar 

  • He, D., Fang, S., Liang, H., Wang, E., & Wu, D. (2020). Contrasting yield responses of winter and spring wheat to temperature rise in China. Environmental Research Letters, 15(12), 124038. https://doi.org/10.1175/2011JCLI4085.1

    Article  Google Scholar 

  • Hoogenboom, G., Porter, C.H., Sheila, V., Boote, K.J., Singh, U., White, J.W., et al (2017). Decision support system for agrotechnology transfer (DSSAT) version 4.7. https://dssat.net DSSAT Foundation, Gainesville, Florida, USA

  • IPCC (2018) Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.). In Press

  • IPCC (2021): Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.). Cambridge University Press, In Press

  • Jaiswal, R., Mall, R. K., Singh, N., Kumar, T. L., & Niyogi, D. (2022). Evaluation of bias correction methods for regional climate models: downscaled rainfall analysis over diverse agroclimatic zones of India. Earth & Space Science, 9(2), 1–21. https://doi.org/10.1029/2021EA001981

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7

    Article  Google Scholar 

  • Kumari, S., Roy, S. B., Sharma, P., Srivastava, A., Sehgal, V. K., & Dhakar, R. (2019). Modeling impacts of climate change on spring wheat in northern India. Journal of Agrometeorology, 21(2), 123–130.

    Article  Google Scholar 

  • Laux, P., Rötter, R. P., Webber, H., Dieng, D., Rahimi, J., Wei, J., & Kunstmann, H. (2021). To bias correct or not to bias correct? An agricultural impact modelers’ perspective on regional climate model data. Agricultural & Forest Meteorology, 304, 108406. https://doi.org/10.1016/j.agrformet.2021.108406

    Article  Google Scholar 

  • Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., & Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130–1136. https://doi.org/10.1038/nclimate3115

    Article  Google Scholar 

  • Liu, B., Martre, P., Ewert, F., Porter, J. R., Challinor, A. J., Müller, C., & Asseng, S. (2019). Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Global Change Biology, 25(4), 1428–1444. https://doi.org/10.1111/gcb.14542

    Article  Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531

    Article  CAS  PubMed  Google Scholar 

  • Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186–189. https://doi.org/10.1038/nclimate1356

    Article  Google Scholar 

  • Maiorano, A., Martre, P., Asseng, S., Ewert, F., Müller, C., Rötter, R. P., & Zhu, Y. (2017). Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 202, 5–20. https://doi.org/10.1016/j.fcr.2016.05.001

    Article  Google Scholar 

  • Mall, R. K., Chaturvedi, M., Singh, N., Bhatla, R., Singh, R. S., Gupta, A., & Niyogi, D. (2021). Evidence of asymmetric change in diurnal temperature range in recent decades over different agro-climatic zones of India. International Journal of Climatology., 41(4), 2597–2610. https://doi.org/10.1002/joc.6978

    Article  Google Scholar 

  • Mall, R. K., Singh, N., & Singh, H. (2016). Evaluation of CERES-Wheat model for different wheat cultivars at Varanasi. Journal of Agrometeorology, 18(1), 149.

    Article  Google Scholar 

  • Mall, R., Singh, N., Singh, K. K., Sonkar, G., & Gupta, A. (2018). Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India. Climatic Change. https://doi.org/10.1007/s10584-018-2255-6

    Article  Google Scholar 

  • Mall, R. K., Srivastava, R. K., Banerjee, T., Mishra, O. P., Bhatt, D., & Sonkar, G. (2019). Disaster risk reduction including climate change adaptation over south Asia: Challenges and ways forward. International Journal of Disaster Risk Science, 10(1), 14–27. https://doi.org/10.1007/s13753-018-0210-9

    Article  Google Scholar 

  • Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., & Hatfield, J. L. (2015). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21(2), 911–925. https://doi.org/10.1111/gcb.12768

    Article  PubMed  Google Scholar 

  • Maslin, M., & Austin, P. (2012). Climate models at their limit? Nature, 486(7402), 183–184. https://doi.org/10.1038/486183a

    Article  CAS  PubMed  Google Scholar 

  • Mereu, V., Gallo, A., Trabucco, A., Carboni, G., & Spano, D. (2021). Modeling high-resolution climate change impacts on wheat and maize in Italy. Climate Risk Management, 33, 100339. https://doi.org/10.1016/j.crm.2021.100339

    Article  Google Scholar 

  • Osman, R., Zhu, Y., Cao, W., Ding, Z., Wang, M., Liu, L., & Liu, B. (2020). Modeling the effects of extreme high-temperature stress at anthesis and grain filling on grain protein in winter wheat. The Crop Journal. https://doi.org/10.1016/j.cj.2020.10.001

    Article  Google Scholar 

  • Porter, J. R., & Gawith, M. (1999). Temperatures and the growth and development of wheat: A review. European Journal of Agronomy, 10(1), 23–36. https://doi.org/10.1016/S1161-0301(98)00047-1

    Article  Google Scholar 

  • Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-43477-z

    Article  CAS  Google Scholar 

  • Ren, S., Qin, Q., & Ren, H. (2019). Contrasting wheat phenological responses to climate change in global scale. Science of the Total Environment, 665, 620–631. https://doi.org/10.1016/j.scitotenv.2019.01.394

    Article  CAS  PubMed  Google Scholar 

  • Richardson, K. J., Lewis, K. H., Krishnamurthy, P. K., Kent, C., Wiltshire, A. J., & Hanlon, H. M. (2018). Food security outcomes under a changing climate: Impacts of mitigation and adaptation on vulnerability to food insecurity. Climatic Change, 147(1–2), 327–341. https://doi.org/10.1007/s10584-018-2137-y

    Article  CAS  Google Scholar 

  • Rosenzweig, C. E., Jones, J. W., Hatfield, J., Antle, J., Ruane, A., Boote, K., & Mutter, C. (2015). Guide for Regional Integrated Assessments: Handbook of Methods and Procedures, Version 5.1. Guide for Regional Integrated Assessments: Handbook of Methods and Procedures, Version 5.1. https://agmip.org/wp-content/uploads/2019/03/AgMIP-Guide-for-RIA-Handbook-of-Methods-and-Procedures.pdf

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110

    Article  CAS  Google Scholar 

  • Sonkar, G., Singh, N., Mall, R. K., Singh, K. K., & Gupta, A. (2020). Simulating the impacts of climate change on sugarcane in diverse Agro-climatic zones of northern India using CANEGRO-Sugarcane model. Sugar Tech, 22(3), 460–472.

  • Singh, N., Mall, R. K., Singh, K., Gupta, A., & Sonkar, G. (2018). Evaluation of RegCM4 climate model for assessment of climate change impact on crop production. Mausam, 69(3), 387–398.

    Article  Google Scholar 

  • Singh, S., Mall, R. K., & Singh, N. (2021a). Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. International Journal of Climatology, 41(S1), E1831–E1845. https://doi.org/10.1002/joc.6814

    Article  Google Scholar 

  • Singh, S., Mall, R. K., Dadich, J., Verma, S., Singh, J. V., & Gupta, A. (2021b). Evaluation of CORDEX-South Asia regional climate models for heat wave simulations over India. Atmospheric Research, 248, 105228. https://doi.org/10.1016/j.atmosres.2020.105228

    Article  Google Scholar 

  • Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., & Zhang, Y. (2018). Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biology, 24(9), 4023–4037. https://doi.org/10.1111/gcb.14302

    Article  PubMed  Google Scholar 

  • Song, Y., Wang, J., & Wang, L. (2020). Satellite solar-induced chlorophyll fluorescence reveals heat stress impacts on wheat yield in India. Remote Sensing, 12(20), 3277. https://doi.org/10.3390/rs12203277

    Article  Google Scholar 

  • Sonkar, G., Mall, R. K., Banerjee, T., Singh, N., Kumar, T. L., & Chand, R. (2019). Vulnerability of Indian wheat against rising temperature and aerosol. Environmental Pollution, 254, 112946. https://doi.org/10.1016/j.envpol.2019.07.114

    Article  CAS  PubMed  Google Scholar 

  • Tao, F., Rötter, R. P., Palosuo, T., Gregorio Hernández, D.-A.C., Mínguez, M. I., Semenov, M. A., & Schulman, A. H. (2018). Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 24(3), 1291–1307. https://doi.org/10.1111/gcb.14019

    Article  PubMed  Google Scholar 

  • Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural & Forest Meteorology, 170, 206–215. https://doi.org/10.1016/j.agrformet.2011.09.002

    Article  Google Scholar 

  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05

    Article  Google Scholar 

  • Toreti, A., Deryng, D., Tubiello, F. N., Müller, C., Kimball, B. A., Moser, G., & Rosenzweig, C. (2020). Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 1(12), 775–782. https://doi.org/10.1038/s43016-020-00195-4

    Article  CAS  Google Scholar 

  • Tubiello, F. N., Rosenzweig, C., Kimball, B. A., Pinter, P. J., Jr., Wall, G. W., Hunsaker, D. J., & Garcia, R. L. (1999). Testing CERES–wheat with free-air carbon dioxide enrichment (FACE) experiment data: CO2 and water Interactions. Agronomy Journal, 91(2), 247–255. https://doi.org/10.2134/agronj1999.00021962009100020012x

    Article  Google Scholar 

  • ur Rahman, M. H., Ahmad, A., Wang, X., Wajid, A., Nasim, W., Hussain, M., & Hoogenboom, G. (2018). Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agricultural & Forest Meteorology, 253, 94–113. https://doi.org/10.1016/j.agrformet.2018.02.008

    Article  Google Scholar 

  • Voldoire, A., Sanchez-Gomez, E., Salas y, M. D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M. P., Planton, S., Saint-Martin, D., … Chauvin, F. (2013). The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn., 40, 2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Voropay, N., Ryazanova, A., & Dyukarev, E. (2021). High-resolution bias-corrected precipitation data over South Siberia, Russia. Atmospheric Research, 254, 105528. https://doi.org/10.1016/j.atmosres.2021.105528

    Article  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental & Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R. P., & Asseng, S. (2017). The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 3(8), 1–13. https://doi.org/10.1038/nplants.2017.102

    Article  Google Scholar 

  • Wang, B., Feng, P., Li Liu, D., O’Leary, G. J., Macadam, I., Waters, C., & Yu, Q. (2020a). Sources of uncertainty for wheat yield projections under future climate are site-specific. Nature Food, 1(11), 720–728. https://doi.org/10.1038/s43016-020-00181-w

    Article  CAS  Google Scholar 

  • Wang, X., Zhao, C., Müller, C., Wang, C., Ciais, P., Janssens, I., & Piao, S. (2020b). Emergent constraint on crop yield response to warmer temperature from field experiments. Nature Sustainability, 3(11), 908–916. https://doi.org/10.1038/s41893-020-0569-7

    Article  Google Scholar 

  • Wilcox, J., & Makowski, D. (2014). A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Research, 156, 180–190. https://doi.org/10.1016/j.fcr.2013.11.008

    Article  Google Scholar 

  • Yadav, M. K., Singh, R. S., Singh, K. K., Mall, R. K., Patel, C. B., Yadav, S. K., et al. (2015). Assessment of climate change impact on productivity of different cereal crops in Varanasi, India. Journal of Agrometeorology, 17(2), 179–184.

  • Ye, J., Gao, Z., Wu, X., Lu, Z., Li, C., Wang, X., & Li, Y. (2021). Impact of increased temperature on spring wheat yield in northern China. Food and Energy Security, 10(2), 368–378.

    Article  Google Scholar 

  • Zampieri, M., Ceglar, A., Dentener, F., & Toreti, A. (2017). Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12(6), 064008. https://doi.org/10.1088/1748-9326/aa723b

    Article  Google Scholar 

  • Zhang, H., Zhou, G., Li Liu, D., Wang, B., Xiao, D., & He, L. (2019). Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Science of the Total Environment, 666, 126–138. https://doi.org/10.1016/j.scitotenv.2019.01.415

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Z., Cai, H., Wang, Z., & Wang, X. (2020). Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere, 11(7), 681. https://doi.org/10.3390/atmos11070681

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the Climate Change Programme, Department of Science and Technology, New Delhi for providing financial support (Award no.: DST/CCP/CoE/ 80/2017(G)). Authors are gratefully acknowledging the World Climate Research Programme’s Working Groups, former coordinating body of CORDEX and CMIP5. The climate modeling groups are sincerely thanked for producing and making available their model output. The authors thank the Earth System Grid Federation (ESGF) infrastructure and the Climate Data Portal hosted at the Centre for Climate Change Research (CCCR), Indian Institute of Tropical Meteorology (IITM) for providing CORDEX South Asia data (http://cccr.tropmet.res.in/home/esgf_node.jsp). The authors wish to thank the India Meteorology Department (IMD) for making available the observation dataset (http://www.imdpune.gov.in/Clim_Pred_LRF_New/ Grided_Data_Download.html).

Funding

Authors thank the Climate Change Programme, Department of Science and Technology, New Delhi, for financial support (DST/CCP/CoE/80/2017(G)).

Author information

Authors and Affiliations

Authors

Contributions

RKM: Conceptualize, Supervision and project management, methodology, interpretation of the results as well as review and editing of the draft; resources; funding acquisition. SP: Methodology, investigation, formal analysis, interpretation of the results, and writing of the original draft. RJ: Methodology, data analysis, visualizations & interpretation of the results. RS: Supervision, review, and editing of the draft. RC: Conceptualization, interpretation of the results, review, and editing of the draft.

Corresponding author

Correspondence to R. K. Mall.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest relating to the material presented in this article. Its contents, including any opinions and/or conclusions expressed, are solely those of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1014 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Mall, R.K., Jaiswal, R. et al. Vulnerability Assessment of Wheat Yield Under Warming Climate in Northern India Using Multi-model Projections. Int. J. Plant Prod. 16, 611–626 (2022). https://doi.org/10.1007/s42106-022-00208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00208-1

Keywords

Navigation