Skip to main content

Advertisement

Log in

The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The improving effectiveness of health care leads inevitably to a rapid increase in the elderly population worldwide. At advanced ages, however, people experience chronic disabilities, which significantly increase the social and economic burden while curtailing survival, independence, and quality of life of the aging population. As aging is a multifactorial process, apart from genetic predisposition, other environmental factors, such as chronic sterile inflammation and cellular senescence, contribute as crucial participants and have been targeted to reverse their deleterious effects on tissue homeostasis and functional integrity. Cellular senescence refers to the essentially irreversible inhibition of cellular proliferation when cells are subjected to extrinsic or endogenous stress. Although the process of cellular senescence has long been known, recent evidence demonstrated that it characterizes many aging phenotypes and that elimination of senescent cells at the tissue level can improve age-related tissue dysfunction. These observations have renewed scientific interest in possible therapeutic interventions. Two major chronic diseases associated with aging that impose an enormous burden on global health systems are type 2 diabetes and osteoporosis. This review presents current data on (i) the underlying molecular mechanisms of cellular senescence, (ii) its relationship to these two endocrine diseases that are today prevalent worldwide, and (iii) future prospects of targeted intervention with the aim of simultaneously improving the progression and prognosis of these serious problems of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldman DP, Cutler D, Rowe JW et al (2013) Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff (Millwood) 32:1698–1705

    Google Scholar 

  2. Kirkland JL (2013) Translating advances from the basic biology of aging into clinical application. Exp Gerontol 48:1–5

    CAS  PubMed  Google Scholar 

  3. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972

    CAS  PubMed  PubMed Central  Google Scholar 

  4. LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Cellular senescence and the biology of aging, disease, and Frailty. Nestle Nutr Inst Workshop Ser 83:11–18

    PubMed  PubMed Central  Google Scholar 

  5. Tchkonia T, Morbeck DE, Von Zglinicki T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684

    CAS  PubMed  Google Scholar 

  6. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roos CM, Zhang B, Palmer AK et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973–977

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Young AR, Narita M, Narita M (2013) Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol 965:1–13

    CAS  PubMed  Google Scholar 

  10. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    CAS  PubMed  Google Scholar 

  11. Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681–696

    CAS  PubMed  Google Scholar 

  12. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645

    CAS  PubMed  Google Scholar 

  13. Park CB, Larsson NG (2011) Mitochondrial DNA mutations in disease and aging. J Cell Biol 193:809–818

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  15. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    CAS  PubMed  Google Scholar 

  16. Talens RP, Christensen K, Putter H et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703

    CAS  PubMed  Google Scholar 

  17. Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36:2–14

    CAS  PubMed  Google Scholar 

  18. Narita M, Nunez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    CAS  PubMed  Google Scholar 

  19. Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295:525–538

    CAS  PubMed  Google Scholar 

  20. Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    CAS  PubMed  Google Scholar 

  21. Benhamed M, Herbig U, Ye T, Dejean A, Bischof O (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14:266–275

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Young AP, Schlisio S, Minamishima YA et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    CAS  PubMed  Google Scholar 

  23. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275

    CAS  PubMed  Google Scholar 

  24. Evan GI, d’Adda di Fagagna F (2009) Cellular senescence: hot or what? Curr Opin Genet Dev 19:25–31

    CAS  PubMed  Google Scholar 

  25. Passos JF, Simillion C, Hallinan J, Wipat A, von Zglinicki T (2009) Cellular senescence: unravelling complexity. Age (Dordr) 31:353–363

    Google Scholar 

  26. Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O (2010) p38(MAPK) in the senescence of human and murine fibroblasts. Adv Exp Med Biol 694:126–137

    CAS  PubMed  Google Scholar 

  27. Macip S, Igarashi M, Fang L et al (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Demaria M, Ohtani N, Youssef SA et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayakawa T, Iwai M, Aoki S et al (2015) SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10:e0116480

    PubMed  PubMed Central  Google Scholar 

  30. Herranz N, Gallage S, Mellone M et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coppe JP, Patil CK, Rodier F et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188

    PubMed  PubMed Central  Google Scholar 

  32. Stow JL, Murray RZ (2013) Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 24:227–239

    CAS  PubMed  Google Scholar 

  33. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    CAS  PubMed  Google Scholar 

  34. Ruggiano A, Foresti O, Carvalho P (2014) Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  36. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    CAS  PubMed  Google Scholar 

  37. Cormenier J, Martin N, Desle J et al (2018) The ATF6alpha arm of the unfolded protein response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech Ageing Dev 170:82–91

    CAS  PubMed  Google Scholar 

  38. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology 55:550–558

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strycharz J, Drzewoski J, Szemraj J, Sliwinska A (2017) Is p53 involved in tissue-specific insulin resistance formation? Oxidative Med Cell Longev 2017:9270549

    Google Scholar 

  41. Correia-Melo C, Passos JF (2015) Mitochondria: are they causal players in cellular senescence? Biochim Biophys Acta 1847:1373–1379

    CAS  PubMed  Google Scholar 

  42. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kassi E, Papavassiliou AG (2008) Could glucose be a proaging factor? J Cell Mol Med 12:1194–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yokoi T, Fukuo K, Yasuda O et al (2006) Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 55:1660–1665

    CAS  PubMed  Google Scholar 

  45. Cramer C, Freisinger E, Jones RK et al (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19:1875–1884

    CAS  PubMed  Google Scholar 

  46. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C (2007) Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129:473–484

    CAS  PubMed  Google Scholar 

  48. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    CAS  PubMed  Google Scholar 

  49. Liu J, Huang K, Cai GY et al (2014) Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal 26:110–121

    PubMed  Google Scholar 

  50. Chan SS, Twigg SM, Firth SM, Baxter RC (2005) Insulin-like growth factor binding protein-3 leads to insulin resistance in adipocytes. J Clin Endocrinol Metab 90:6588–6595

    CAS  PubMed  Google Scholar 

  51. Kim KS, Seu YB, Baek SH et al (2007) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 18:4543–4552

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Markowski DN, Thies HW, Gottlieb A, Wenk H, Wischnewsky M, Bullerdiek J (2013) HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr 8:449–456

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Davalos AR, Kawahara M, Malhotra GK et al (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201:613–629

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stern DM, Yan SD, Yan SF, Schmidt AM (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 1:1–15

    CAS  PubMed  Google Scholar 

  55. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150

    CAS  PubMed  Google Scholar 

  56. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    CAS  PubMed  Google Scholar 

  58. Spranger J, Kroke A, Mohlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817

    CAS  PubMed  Google Scholar 

  59. Uchida T, Nakamura T, Hashimoto N et al (2005) Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 11:175–182

    CAS  PubMed  Google Scholar 

  60. Tavana O, Puebla-Osorio N, Sang M, Zhu C (2010) Absence of p53-dependent apoptosis combined with nonhomologous end-joining deficiency leads to a severe diabetic phenotype in mice. Diabetes 59:135–142

    CAS  PubMed  Google Scholar 

  61. Helman A, Klochendler A, Azazmeh N et al (2016) p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 22:412–420

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36(Suppl 1):S123–S128

    PubMed  Google Scholar 

  63. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    CAS  PubMed  Google Scholar 

  64. Vigneron A, Vousden KH (2010) p53, ROS and senescence in the control of aging. Aging (Albany NY) 2:471–474

    CAS  Google Scholar 

  65. Almeida M, Han L, Martin-Millan M et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    CAS  PubMed  Google Scholar 

  66. Farr JN, Fraser DG, Wang H et al (2016) Identification of senescent cells in the bone microenvironment. J Bone Miner Res 31:1920–1929

    CAS  PubMed  Google Scholar 

  67. Khosla S, Farr JN, Kirkland JL (2018) Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J Clin Endocrinol Metab 103:1282–1290

    PubMed  PubMed Central  Google Scholar 

  68. Piemontese M, Almeida M, Robling AG et al (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2(17). pii: 93771

  69. Kim HN, Chang J, Shao L et al (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693–703

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Manolagas SC (2018) The quest for osteoporosis mechanisms and rational therapies: how far we’ve come, how much further we need to go. J Bone Miner Res 33:371–385

    PubMed  Google Scholar 

  71. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  72. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishii KA, Fumoto T, Iwai K et al (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    CAS  PubMed  Google Scholar 

  75. Almeida M (2011) Unraveling the role of FoxOs in bone--insights from mouse models. Bone 49:319–327

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614

    CAS  PubMed  Google Scholar 

  77. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    CAS  PubMed  Google Scholar 

  78. He N, Zhu X, He W, Zhao S, Zhao W, Zhu C (2015) Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells. Biosci Biotechnol Biochem 79:1779–1786

    CAS  PubMed  Google Scholar 

  79. Yan S, Miao L, Lu Y, Wang L (2019) Sirtuin 1 inhibits TNF-alpha-mediated osteoclastogenesis of bone marrow-derived macrophages through both ROS generation and TRPV1 activation. Mol Cell Biochem 455:135–145

    CAS  PubMed  Google Scholar 

  80. Hall BM, Balan V, Gleiberman AS et al (2016) Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY) 8:1294–1315

    CAS  Google Scholar 

  81. Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55:2284–2292

    CAS  PubMed  Google Scholar 

  83. Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Huffman DM, Justice JN, Stout MB, Kirkland JL, Barzilai N, Austad SN (2016) Evaluating health span in preclinical models of aging and disease: guidelines, challenges, and opportunities for geroscience. J Gerontol A Biol Sci Med Sci 71:1395–1406

    PubMed  PubMed Central  Google Scholar 

  85. Kim EC, Kim JR (2019) Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep 52:47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang HH, Hwangbo K, Zheng MS et al (2014) Quercetin-3-O-beta-D-glucuronide isolated from Polygonum aviculare inhibits cellular senescence in human primary cells. Arch Pharm Res 37:1219–1233

    CAS  PubMed  Google Scholar 

  87. Xu M, Tchkonia T, Ding H et al (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112:E6301–E6310

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Yavropoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovos, G., Yavropoulou, M.P. & Yovos, J.G. The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions. Hormones 18, 339–351 (2019). https://doi.org/10.1007/s42000-019-00132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00132-6

Keywords

Navigation