Skip to main content

Advertisement

Log in

Neurocognitive impairment in type 2 diabetes mellitus

  • Historical Note
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

There is emerging evidence that cognitive impairment could be a diabetes mellitus-related complication. It has been suggested that diabetic people are at increased risk of cognitive decline, since the metabolic and vascular disturbances of the disease affect brain function. Additionally, prolonged exposure to olther potential detrimental factors leads to irreversible cognitive decrements over time due to the aging process. Neurocognitive impairment signifies decreased performance in cognitive domains such as verbal and nonverbal memory, both immediate and delayed memory, executive function, attention, visuospatial and psychomotor performance, information processing speed, semantic knowledge, and language abilities. The aim of the present article is to review the existing literature on the issue of the neurocognitive decline in type 2 diabetes. A literature search of databases was performed, using as keywords “diabetes” and “cognitive impairment,” and the reference list of papers so identified were examined, with only English language papers being used. Understanding and preventing diabetes-associated cognitive deficits remains a key priority for future research. It is important to ascertain whether interventions to delay diabetes onset or better control of established disease could prevent some of its adverse effects on cognitive skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harris MI, Klein R, Welborn TA, Knulman MW (1992) Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care 15(7):815–819

    Article  CAS  Google Scholar 

  2. Dye L, Boyle NB, Champ C, Lawton C (2017) The relationship between obesity and cognitive health and decline. Proc Nutr Soc 74(4):443–444. https://doi.org/10.1017/S0029665117002014

    Article  Google Scholar 

  3. Miles WR, Root HF (1922) Psychologic tests applied to diabetic patients. Arch Int Med 30(6):767–777

    Article  Google Scholar 

  4. Yates KF, Sweat V, Yau PL, Turchiano MM (2012) Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler Tromb Vasc Biol 32(9):2060–2067. https://doi.org/10.1161/ATVBAHA.112.252759

    Article  CAS  Google Scholar 

  5. Moheet A, Mangia S, Seaquist ER (2015) Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci 1353:60–71. https://doi.org/10.1111/nyas.12807

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pal K, Mukadam N, Petersen I, Cooper C (2018) Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 53:1149–1160. https://doi.org/10.1007/s00127-018-1581-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moon JH (2016) Endocrine risk factors for cognitive impairment. Endocrinol Metab 31:185–192. https://doi.org/10.3803/EnM.2016.31.2.185

    Article  CAS  Google Scholar 

  8. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113. https://doi.org/10.1177/193229680800200619

  9. van den Berg E, de Craen AJM, Biessels GJ, Gussekloo J, Westendorp RGJ (2006) The impact of diabetes mellitus to cognitive decline in the oldest of the old: a prospective population-based study. Diabetologia 49:2015–2023

    Article  Google Scholar 

  10. van den Berg E, Kloppenborg RP, Kessels RPC, Kappelle LJ, Biessels GJ (2009) Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Acta 1792(5):470–481. https://doi.org/10.1016/j.bbadis.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  11. Pasquier F (2010) Diabetes and cognitive impairment: how to evaluate the cognitive status? Diabetes Metab 36(Suppl 3):S100–S105. https://doi.org/10.1016/S1262-3636(10)70475-4

    Article  PubMed  Google Scholar 

  12. Dobi A, Bravo SB, Veeren B et al (2019) Advanced glycation end-products disrupt human endothelial cells redox homeostasis: new insights into reactive oxygen species production. Free Radic Res 1:1–20. https://doi.org/10.1080/10715762.2018.1529866

    Article  CAS  Google Scholar 

  13. Ito F, Sono Y, Ito T (2019) Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants (Basel) 25(3):8. https://doi.org/10.3390/antiox8030072

    Article  CAS  Google Scholar 

  14. Solanki I, Parihar P, Shetty R, Parihar MS (2017) Synaptosomal and mitochondrial oxidative damage followed by behavioral impairments in streptozocin induced diabetes mellitus: restoration by Malvastrum tricuspidatum. Cell Mol Biol 63(7):94–101. https://doi.org/10.14715/cmb/2017.63.7.16

    Article  CAS  PubMed  Google Scholar 

  15. Cho HJ, Xie C, Cai H (2018) AGE- induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression. Transl Neurodegener 7:1. https://doi.org/10.1186/s40035-018-0106-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cooray G, Nilsson E, Wahlin A et al (2011) Effects of intensified metabolic control on CNS function in type 2 diabetes. Psychoneuroendocrinology 36(1):77–86. https://doi.org/10.1016/j.psyneuen.2010.06.009

    Article  PubMed  Google Scholar 

  17. Pappas C, Andel R, Infurna FJ, Setharaman S (2017) Glycated haemoglobin (HbA1c), diabetes and trajectories of change in episodic memory performance. J Epidemiol Community Health 71(2):115–120. https://doi.org/10.1136/jech-2016-207588

    Article  PubMed  Google Scholar 

  18. Breitling LP, Olsen H, Müller H et al (2014) Self- or physician-reported diabetes, glycemia markers, and cognitive functioning in older adults in Germany. Am J Geriatr Psychiatry 22(11):1105–1115. https://doi.org/10.1016/j.jagp.2013.06.004

    Article  PubMed  Google Scholar 

  19. Schneider ALC, Selvin E, Sharrett AR et al (2017) Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: the atherosclerosis risk in communities neurocognitive study (ARIC- NCS). Diabetes Care 40(11):1514–1521. https://doi.org/10.2337/dc17-1185

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bitra VR, Rapaka D, Akula A (2015) Prediabetes and Alzheimer’s disease. Indian J Pharm Sci 77(5):511–514

    Article  CAS  Google Scholar 

  21. Ganmore I, Beeri MS (2018) The chicken or the egg? Does glycaemic control predict cognitive function or the other way around? Diabetologia 61(9):1913–1917. https://doi.org/10.1007/s00125-018-4689-9

    Article  CAS  PubMed  Google Scholar 

  22. Anstey KJ, Sargent-Cox K, Eramudugolla R, Magliano DJ, Shaw JE (2015) Association of cognitive function with glucose tolerance and trajectories of glucose tolerance over 12 years in the AusDiab study. Alzheimers Res Ther 7(1):48. https://doi.org/10.1186/s13195-015-0131-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamport DJ, Chadwick HK, Dye L, Mansfield MW, Lawton CL (2014) A low glycaemic load breakfast can attenuate cognitive impairments observed in middle aged obese females with impaired glucose tolerance. Nutr Metab Cardiovasc Dis 24(10):1128–1136. https://doi.org/10.1016/j.numecd.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  24. Welters A, Klüppel C, Mrugala J et al (2017) NMDAR antagonists for the treatment of diabetes mellitus- current status and future directions. Diabetes Obes Metab 19(Suppl 1):95–106. https://doi.org/10.1111/dom.13017

    Article  CAS  PubMed  Google Scholar 

  25. Bie-Olsen LG, Kjaer TW, Pedersen-Bjergaard U et al (2009) Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: a H2 150 positron emission tomographic study. J Neurosci Res 87(8):1922–1928. https://doi.org/10.1002/jnr.22002

    Article  CAS  PubMed  Google Scholar 

  26. McMillan JM, Mele BS, Hogan DB, Leung AA (2018) Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diab Res Care 16(1):6. https://doi.org/10.1135/bmjdrc-2018-000563

    Article  Google Scholar 

  27. Ojo O, Brooke J (2015) Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health 12(7):8281–8294. https://doi.org/10.3390/ijerph120708281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin CH, Sheu WH (2013) Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7 year follow up study. J Intern Med 273(1):102–110. https://doi.org/10.1111/joim.12000

    Article  PubMed  Google Scholar 

  29. Tuligenga RH (2015) Intensive glycemic control and cognitive decline in patients with type 2 diabetes: a meta-analysis. Endocr Connect 4(2):R16–R24. https://doi.org/10.1530/EC-15-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murray AM, Hsu FC, Williamson JD et al (2017) ACCORDION MIND: results of the observational extension of the ACCORD MIND randomized trial. Diabetologia 60(1):69–80

    Article  CAS  Google Scholar 

  31. Kawamura T, Umemura T, Hotta N (2012) Cognitive impairment in diabetic patients: can diabetic control prevent cognitive decline? Journal of Diabetes Investigation 3(5):413–423. https://doi.org/10.1111/j.2040-1124.2012.00234.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Umegaki H (2014) Type 2 diabetes as a risk factor for cognitive impairment: current insights. Clin Interv Aging 9:1011–1019. https://doi.org/10.2147/CIA.548926

    Article  PubMed  PubMed Central  Google Scholar 

  33. Molnár G, Faragó N, Kocsis ÁK et al (2014) GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J Neurosci 34(4):1133–1137. https://doi.org/10.1523/JNEUROSCI.4082-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kern W, Peters A, Fruehwald-Schultes B et al (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74(4):270–280

    Article  CAS  Google Scholar 

  35. Kullmann S, Heni M, Hallschmid M et al (2016) Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 96(4):1169–1209. https://doi.org/10.1152/physrev.00032.2015

    Article  CAS  PubMed  Google Scholar 

  36. Hu DH, Li YL, Liang ZJ et al (2018) Long-term high-fat diet inhibits hippocampal expression of insulin receptor substrates and accelerates cognitive deterioration in obese rats. Nan Fang Yi Ke Da Xue Xue Bao 38(4):460–465

    CAS  PubMed  Google Scholar 

  37. de Nazareth AM (2017) Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement Neuropsychol 11(2):105–113. https://doi.org/10.1590/1980-57642016dn11-020002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tumminia A, Vinciquerra F, Parisi M, Frittitta L (2018) Type 2 diabetes mellitus and Alzheimer’s disease: role of insulin signalling and therapeutic implications. Int J Mol Sci 24:19 (11). https://doi.org/10.3390/ijms19113306

    Article  CAS  Google Scholar 

  39. Wang H, Chen F, Du YF et al (2018) Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology 131:143–153. https://doi.org/10.1016/j.neuropharm.2017.12.026

    Article  CAS  PubMed  Google Scholar 

  40. Butterfield DA, Domenico FD, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta 1482(9):1693–1706. https://doi.org/10.1016/j.bbadis.2014.06.010

    Article  CAS  Google Scholar 

  41. Leino M, Popova SN, Alafuzoff I (2017) Transactive DNA binding protein 43 rather than other misfolded proteins in the brain is associated with islet amyloid polypeptide in pancreas in aged subjects with diabetes mellitus. J Alzheimer Dis 59(1):43–56. https://doi.org/10.3233/JAD-170192

    Article  CAS  Google Scholar 

  42. Rivera EJ, Goldin A, Fulmer N et al (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    Article  CAS  Google Scholar 

  43. Zhou X, Zhu Q, Han X et al (2015) Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat. Can J Physiol Pharmacol 93(11):1007–1013. https://doi.org/10.1139/cjpp-2015-0118

    Article  CAS  PubMed  Google Scholar 

  44. Moganti K, Li F, Schmuttermaier C et al (2017) Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 222(10):952–959. https://doi.org/10.1016/j.imbio.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Bai J, Wu H, Ying JY (2015) Trapping cells in paper for white blood cell count. Biosens Bioelectron 69:121–127. https://doi.org/10.1016/j.bios.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  46. Zhen J, Lin T, Huang X et al (2018) Association of ApoE genetic polymorphism and type 2 diabetes with cognition in non-demented aging Chinese adults: a community based cross-sectional study. Aging Dis 9(3):346–357. https://doi.org/10.14336/AD.2017.0715

    Article  PubMed  PubMed Central  Google Scholar 

  47. van Eersel MAE, Joosen H, Gansevoort RT et al (2013) The interaction of age and type 2 diabetes on executive function and memory in persons aged 35 years or older. PLoS One 8(12). https://doi.org/10.1371/journal.pone.0082991

    Article  Google Scholar 

  48. Kino T, Chrousos GP (2005) Glucocorticoid effects on gene expression. In: Steckler T, Kalin NH, Reul JMHM (eds) Handbook of stress and the brain. Elsevier B.V, Amsterdam, pp 295–311

    Google Scholar 

  49. Bruehl H, Wolf OT, Sweat V et al (2009) Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res 14(1280):186–194. https://doi.org/10.1016/j.brainres.2009.05.032

    Article  CAS  Google Scholar 

  50. Dey A, Hao S, Erion JR et al (2014) Glucocorticoid sensitization of microglia in a genetic mouse model of obesity and diabetes. J Neuroimmuno 269(1–2):20–27. https://doi.org/10.1016/j.jneuroim.2014.01.013

    Article  CAS  Google Scholar 

  51. Nader N, Chrousos GP, Kino T (2010) Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 21(5):277–286. https://doi.org/10.1016/j.tem.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JH, Choi Y, Jun C et al (2014) Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab (Seoul) 29(2):112–121. https://doi.org/10.3803/EnM.2014.29.2.112

    Article  Google Scholar 

  53. Cui D, Liu X, Liu M et al (2019) Subcortical gray matter structural alterations in prediabetes and type 2 diabetes. Neuroreport 30(6):441–445. https://doi.org/10.1097/WNR.0000000000001224

    Article  PubMed  Google Scholar 

  54. Rawlings AM, Sharrett AR, Schneider AL et al (2014) Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med 161(11):785–793. https://doi.org/10.7326/M14-0737

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xiong Y, Sui Y, Zhang S et al (2018) Brain microstructural alterations in type 2 diabetes: diffusion kurtosis imaging provides added value to diffusion tensor imaging. Eur Radiol 24(9):1997–2008. https://doi.org/10.1007/s00330-018-5746-y

    Article  Google Scholar 

  56. Zhang Y, Cao Y, Xie Y et al (2019) Altered brain structural topological properties in type 2 diabetes mellitus patients without complications. J Diabetes 11(2):129–138. https://doi.org/10.1111/1753-0407.12826

    Article  CAS  PubMed  Google Scholar 

  57. Tan X, Liang Y, Zeng H et al (2019) Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment. Brain Imaging Behav 5. https://doi.org/10.1007/s11682-018-0017-8

    Article  Google Scholar 

  58. Liu D, Duan S, Zhou C et al (2018) Altered brain functional hubs and connectivity in type 2 diabetes mellitus patients: a resting-state fMRI study. Front Aging Neurosci 6(10):55. https://doi.org/10.3389/fnagi.2018.00055

    Article  CAS  Google Scholar 

  59. Chen Y, Liu Z, Zhang J et al (2014) Altered brain activation patterns under different working memory loads in patients with type 2 diabetes. Diabetes Care 37(12):3157–3163. https://doi.org/10.2337/dc14-1683

    Article  PubMed  Google Scholar 

  60. Arnold SE, Arvanitakis Z, Macauley-Rambach SL et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181. https://doi.org/10.1038/nrneurol.2017.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stehouwer CDA (2018) Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes 67(9):1729–1741. https://doi.org/10.2337/dbi17-0044 Review

    Article  CAS  PubMed  Google Scholar 

  62. Hugenschmidt CE, Lovato JF, Ambrosius WT et al (2014) The cross-sectional and longitudinal associations of diabetic retinopathy with cognitive function and brain MRI findings: the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care 37:3244–3252. https://doi.org/10.2337/dc14-0502

    Article  PubMed  PubMed Central  Google Scholar 

  63. de la Monte SM, Wands JR (2005) Review of insulin, insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. Journal of Alzheimer’s disease: JAD 7:45–61

    Article  Google Scholar 

  64. Balakumar P, Maung-U K, Jagadeesh G (2016) Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res 113(Pt A):600–609. https://doi.org/10.1016/j.phrs.2016.09.040

    Article  PubMed  Google Scholar 

  65. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  Google Scholar 

  66. Van Dyken P, Lacoste B (2018) Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci 12:930. https://doi.org/10.3389/fnins.2018.00930

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jin L, Li YP, Feng Q et al (2018) Cognitive deficits and Alzheimer-like neuropathological impairments during adolescence in a rat model of type 2 diabetes mellitus. Neural Regen Res 13(11):1995–2004. https://doi.org/10.4103/1673-5374.239448

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mahmood SS, Levy D, Vasan RS, Wang TJ (2014) The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383(9921):999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3

    Article  PubMed  Google Scholar 

  69. Palta P, Huang ES, Kalyani RR et al (2017) Hemoglobin A1c and mortality in older adults with and without diabetes: results from the National Health and Nutrition Examination Surveys (1988-2011). Diabetes Care 40(4):453–460. https://doi.org/10.2337/dci16-0042

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW (2016) Diabetes and cognitive impairment. Curr Diab Rep 16(9):87. https://doi.org/10.1007/s11892-016-0775-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Gemert T, Wölwer W, Weber KS et al (2018) Cognitive function is impaired in patients with recently diagnosed type 2 diabetes, but not type 1 diabetes. J Diabetes Res 9:1470476. https://doi.org/10.1155/1470476

    Article  Google Scholar 

  72. Rojas-Carranza CA, Bustos-Cruz RH, Pino-Pinzon CJ et al (2018) Diabetes-related neurological implications and pharmacogenomics. Curr Pharm Des 24(15):1695–1710. https://doi.org/10.2174/1381612823666170317165350

    Article  CAS  PubMed  Google Scholar 

  73. Goh DA, Dong Y, Lee WY et al (2014) A pilot study to examine the correlation between cognition and blood biomarkers in a Singapore Chinese male cohort with type 2 diabetes mellitus. PLoS One 9(5):e96874. https://doi.org/10.1371/journal.pone.0096874.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1–2):125–134

    Article  CAS  Google Scholar 

  75. Laakso M, Kuusisto J (2017) Diabetes secondary to treatment with statins. Curr Diab Rep 17(2):10. https://doi.org/10.1007/s11892-017-0837-8

    Article  CAS  PubMed  Google Scholar 

  76. Martinac M, Pehar D, Karlović D et al (2014) Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder. Acta Clin Croat 53(1):55–71

    PubMed  Google Scholar 

  77. Wardlaw JM, Smith EE, Biessels GJ et al (2013b) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rensma SP, van Sloten TT, Launer LJ, Stehouwer CDA (2018) Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and, meta-analysis. Neurosci Biobehav Rev 90:164–173. https://doi.org/10.1016/j.neubiorev.2018.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gradman TJ, Laws A, Thompson LW, Reaven GM (1993) Verbal learning and/or memory improves with glycaemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc 41(12):1305–1312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Karvani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvani, M., Simos, P., Stavrakaki, S. et al. Neurocognitive impairment in type 2 diabetes mellitus. Hormones 18, 523–534 (2019). https://doi.org/10.1007/s42000-019-00128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00128-2

Keywords

Navigation