Skip to main content

Advertisement

Log in

Continuous catalytic aerobic oxidation of o‑chlorotoluene to o-chlorobenzoic acid under slug flow conditions

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A continuous-flow process was developed for the aerobic oxidation of o-chlorotoluene (OCT) to o-chlorobenzoic acid (OCBA) with pure oxygen. Acetic acid as cosolvent and CoBr2/MnBr2 as catalyst, with a small amount of acetaldehyde as the radical initiator to make the reaction rapidly stimulates. Through the regulation of gas–liquid mixing, slug flow obtains similar mass transfer coefficient of annular flow and the reactor volume was further reduced. The reaction parameters were easily controlled by take the advantages of continuous-flow reactor. Under the optimal reaction conditions, the isolated yield of OCBA reached up to 94%. Compared with the traditional batch process, shorter residence time, higher product yield and operation safety are achieved by adapting simple continuous-flow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gavriilidis A, Constantinou A, Hellgardt K, Hii KK, Hutchings GJ, Brett G L, Kuhn, S, Marsden SP (2016) Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. React. Chem. Eng. 595–612 https://doi.org/10.1039/C6RE00155F

  2. Mei XF, August AT, Wolf C (2006) Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives. J Org Chem 71(1):142–149. https://doi.org/10.1021/jo0518809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi H, Abe M, Sugawara T, Tanaka K, Saito Y, Fujimura S et al (1998) Clotrimazole, an imidazole antimycotic, is a potent inhibitor of angiogenesis. Cancer Sci 89:445–451. https://doi.org/10.1111/j.1349-7006.1998.tb00583.x

    Article  CAS  Google Scholar 

  4. Yang LJ, Liu P, Zhang HY, Zhang YC, Zhao JQ (2020) Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor. Org Process Res Dev 24(10):2034–2042. https://doi.org/10.1021/acs.oprd.0c00135

    Article  CAS  Google Scholar 

  5. Ahmed MS, Mannel DS, Root TW, Stahl SS (2017) Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd−Bi−Te/C (PBT/C) Catalyst. Org Process Res Dev 21(9):1388–1393. https://doi.org/10.1021/acs.oprd.7b00223

    Article  CAS  Google Scholar 

  6. Yu H, Ru S, Zhai YY, Dai GY, Han S, Wei YG (2018) An Efficient Aerobic Oxidation Protocol of Aldehydes to Carboxylic Acids in Water Catalyzed by an Inorganic-Ligand-Supported Copper Catalyst. ChemCatChem 10:1253–1257. https://doi.org/10.1002/cctc.201701599

    Article  CAS  Google Scholar 

  7. Taha N, Chidambaram M, Dakka J, Sasson Y (2009) Co(II) Catalyzed Solvent Free Auto-Oxidation of Methylbenzenes to Substituted Benzoic Acids Under Phase Transfer Conditions. Catal Lett 129(3–4):358–362. https://doi.org/10.1007/s10562-009-9874-5

    Article  CAS  Google Scholar 

  8. Wang XY, Shang ZP, Zha GF, Chen XQ, Bukhari SNA, Qin HL (2016) [Ru(bpy)3]Cl2-catalyzed aerobic oxidative cleavage β-diketones to carboxylic acids under visible light irradiation. Tetrahedron Lett 57(50):5628–5631. https://doi.org/10.1016/j.tetlet.2016.11.002

    Article  CAS  Google Scholar 

  9. Zhu XJ, Liu Y, Liu C, Yang HJ, Fu H (2020) Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds. Green Chem 22:4357–4363. https://doi.org/10.1039/d0gc00383b

    Article  CAS  Google Scholar 

  10. Ingwalson RW, Ledford ND (1971) Process for preparing orthochlorobenzaldehyde US 3(624):157

    Google Scholar 

  11. Gunchenko PA, Li J, Liu BF, Chen HY, Pashenko AE, Bakhonsky VV, Zhuk TS, Fokin AA (2018) Aerobic oxidations with N-hydroxyphthalimide in trifluoroacetic acid. Mol Catal 447:72–79. https://doi.org/10.1016/j.mcat.2017.12.017

    Article  CAS  Google Scholar 

  12. Liu JY, Zhang YY, Yan XD, Wang ZH, Wu FM, Fang SM, Jian PM (2018) Selective oxidation of o-chlorotoluene to o-chlorobenzaldehyde catalyzed by (Co, Mn)(Co, Mn)2O4 catalysts. Can J Chem Eng 96:1746–1751. https://doi.org/10.1002/cjce.23116

    Article  CAS  Google Scholar 

  13. Prabaharan T, Dillip KC (2022) Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp3)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. J Org Chem 87(6):4061–4077. https://doi.org/10.1021/acs.joc.1c02855

    Article  CAS  Google Scholar 

  14. Tomas RAF, Bordado JCM, Gomes JFP (2013) p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chem Rev 113(10):7421–7469. https://doi.org/10.1021/cr300298j

    Article  CAS  PubMed  Google Scholar 

  15. Chen KX, Zhang PF, Wang Y, Li HR (2018) Metal-free allylic/benzylic oxidation strategies with molecular oxygen: recent advances and future prospects. Green Chem 16(5):2344–2374. https://doi.org/10.1039/c3gc42135j

    Article  CAS  Google Scholar 

  16. Partenheimer W (1995) Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catal Today 23(2):69–157. https://doi.org/10.1016/0920-5861(94)00138-R

    Article  CAS  Google Scholar 

  17. Partenheimer W (2004) The Complex Synergy of Water in the Metal/Bromide Autoxidation of Hydrocarbons Caused by Benzylic Bromide Formation. Adv Synth Catal 346:297–306. https://doi.org/10.1002/adsc.200303187

    Article  CAS  Google Scholar 

  18. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017) Safety assessment in development and operation of modular continuous-flow processes. React chem Eng 2:258–280. https://doi.org/10.1039/C7RE00021A

    Article  CAS  Google Scholar 

  19. Hone CA, Kappe CO (2019) The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Curr. Chem. 377 (1) 1–44 https://pubmed.ncbi.nlm.nih.gov/30536152

  20. Gemoets HPL, Su YH, Shang MJ, Hessel V, Noel T, Luque R (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45(1):83–117. https://doi.org/10.1039/C5CS00447K

    Article  CAS  PubMed  Google Scholar 

  21. Matthew BP, Bartholomaus P, Kerry G, Peter HS (2017) The Hitchhiker’s Guide to Flow Chemistry. Chem Rev 117(18):11796–11893. https://doi.org/10.1021/acs.chemrev.7b00183

    Article  CAS  Google Scholar 

  22. Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250. https://doi.org/10.1039/c6cs00830e

    Article  CAS  PubMed  Google Scholar 

  23. John R, Kappe CO, Jaan AP (2020) Flow Chemistry Enabling Efficient Synthesis. Org Process Res Dev 24(10):1779–1780. https://doi.org/10.1021/acs.oprd.0c00406

    Article  CAS  Google Scholar 

  24. Yu ZQ, Ye X, Xu QL, Xie XX, Su WK (2017) A Fully Continuous-Flow Process for the Synthesis of p-Cresol: Impurity analysis and process optimization. Org Process Res Dev 21(10):1644–1652. https://doi.org/10.1021/acs.oprd.7b00250

    Article  CAS  Google Scholar 

  25. Guo SZYuZQ, CM Yu (2018) Kilogram-Scale Synthesis of 2,4-Dichloro-5-fluorobenzoic Acid by Air Oxidation under the Continuous-Flow Process. Org. Process Res. Dev. 22(2):252–256. https://doi.org/10.1021/acs.oprd.7b00358

    Article  CAS  Google Scholar 

  26. Liu JM, Wang DH, Xu QL, Yu HW, Zhou JD, Yu ZQ, Su WK (2020) Continuous-flow double diazotization for the synthesis of m-difluorobenzene via Balz-Schiemann reaction. J Flow Chem 10:589–596. https://doi.org/10.1007/s41981-020-00115-4

    Article  CAS  Google Scholar 

  27. Li XF,Ba GZ (2018) Synthesizing method of aromatic carboxylic acid compounds in continuous flow microchannel reactor. CN 108794321

  28. Zhang HG, Tang SW, Liang B (2011) Residence time distribution in two-phase flow mini-channel reactor. Chem Eng J 174:652–659. https://doi.org/10.1016/j.cej.2011.09.056

    Article  CAS  Google Scholar 

  29. Fries DM, Rudolf VRP (2009) Impact of inlet design on mass transfer in gas-liquid rectangular microchannels. Microfluid Nanofluid 6(1):27–35. https://doi.org/10.1007/s10404-008-0292-6

    Article  CAS  Google Scholar 

  30. Yue J, Chen GW, Yuan Q, Luo LG, Gonthier Y (2007) Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. Chem Eng Sci 62(7):2096–2108. https://doi.org/10.1016/j.ces.2006.12.057

    Article  CAS  Google Scholar 

  31. Yue J, Luo LG, Gonthier Y, Chen GW, Yuan Q (2008) An experimental investigation of gas-liquid two-phase flow in single microchannel contactors. Chem Eng Sci 63(16):4189–4202. https://doi.org/10.1016/j.ces.2008.05.032

    Article  CAS  Google Scholar 

  32. Dong ZY, Yao CQ, Zhang YC, Chen GW, Yuan Q, Xu J (2016) Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J 62(4):1294–1307. https://doi.org/10.1002/aic.11743

    Article  CAS  Google Scholar 

  33. Zhang Q, Dong ZY, Liu ZK, Chen GW (2022) Effect of ultrasonic waveforms on gas-liquid mass transfer in microreactors. AIChE J. 68(8):e17689. https://doi.org/10.1002/aic.17689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the Zhejiang Provincial Key R&D Project (No.2020C03006 & 2019-ZJ-JS-03 & 2018C03074) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (2020-0107-3-1)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqun Yu or Weike Su.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4984 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, L., Zhang, W. et al. Continuous catalytic aerobic oxidation of o‑chlorotoluene to o-chlorobenzoic acid under slug flow conditions. J Flow Chem 13, 325–335 (2023). https://doi.org/10.1007/s41981-023-00272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-023-00272-2

Keywords

Navigation