Skip to main content

Advertisement

Log in

Electro-oxidation of 2-chlorophenol with BDD electrodes in a continuous flow electrochemical reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Synthetic solutions of 2-chlorophenol (2-CP, 1 mM) were treated in an undivided continuous flow electrochemical reactor equipped with boron-doped diamond (BDD) electrodes. The process was conducted at different current densities (j = 0.10, 0.125, and 0.14 A cm−2), initial pH (4.0, 7.3, and 9.0), and volumetric flow rate (Q = 0.5, 1.0, and 1.5 L min−1). The results of this study showed that the best operational conditions were: j = 0.14 A cm−2, pH = 7.3, and y Q = 1 L min−1. Under these operational conditions the degradation and mineralization of 2-CP were, 100% and 96%, respectively, after 6 h of electrolysis time. The by-products were identified by UHPLC. Also, it was found that the electrochemical degradation of 2-chlorophenol follows a pseudo-first order kinetics. Furthermore, these results demonstrate that the electrolysis process employed in this work allows high percentages (96%) of mineralization of 2-CP, a relative low treatment cost ($ 3 MXN/ 2.5 L of synthetic solution), and that the process is applicable to remediate wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajeel MA, Aroua MK, Daud WMAW (2015) Anodic degradation of 2-Chlorophenol by carbon black diamond and activated carbon composite electrodes. Electrochim Acta 180:22–28

    Article  CAS  Google Scholar 

  2. Ajeel MA, Aroua MK, Daud WMAW, Mazari SA (2017) Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2-Chlorophenol at carbon black diamond composite electrode. Ind Eng Chem Res 56(6):1652–1660

    Article  CAS  Google Scholar 

  3. Amado-Piña D, Roa-Morales G, Barrera-Díaz C, Balderas-Hernandez P, Romero R, Martín del Campo E, Natividad R (2017) Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: phenol degradation. Fuel 198:82–90

    Article  Google Scholar 

  4. Ba-Abbad MM, Takriff MS, Kadhum AAH, Mohamad AB, Benamor A, Mohammad AW (2017) Solar photocatalytic degradation of 2-chlorophenol with ZnO nanoparticles: optimisation with D-optimal design and study of intermediate mechanisms. Environ Sci Pollut Res 24(3):2804–2819

    Article  CAS  Google Scholar 

  5. Baskin S, Salem H (1997) Oxidants, antioxidants and free radicals, Taylor & Francis

  6. Borràs N, Oliver R, Arias C, Brillas E (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114(24):6613–6621

    Article  Google Scholar 

  7. Brillas E, Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA (2005) Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere 58(4):399–406

  8. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631

    Article  CAS  Google Scholar 

  9. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1992) Local mass transport effects in the FM01 laboratory electrolyser. J Appl Electrochem 22(7):613–619

    Article  CAS  Google Scholar 

  10. Cornejo OM, Murrieta MF, Castañeda LF, Nava JL (2019) Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: A critical review. Electrochim Acta: 135373

  11. Chang C-F, Chen T-Y, Chin C-JM, Kuo Y-T (2017) Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst. Chemosphere 175:76–84

    Article  CAS  Google Scholar 

  12. Dercová K, Sejáková Z, Skokanová M, Barančíková G, Makovníková J (2007) Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere 66(5):783–790

    Article  Google Scholar 

  13. Enache TA, Chiorcea-Paquim A-M, Fatibello-Filho O, Oliveira-Brett AM (2009) Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode. Electrochem Commun 11(7):1342–1345

    Article  CAS  Google Scholar 

  14. Ezerskis Z, Jusys Z (2001) Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography­mass spectrometry. Pure Appl Chem 73:1929

    Article  CAS  Google Scholar 

  15. Guinea E, Arias C, Cabot PL, Garrido JA, Rodríguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42(1–2):499–511

    Article  CAS  Google Scholar 

  16. Huang CP, Chu C-s (2012) Indirect electrochemical oxidation of Chlorophenols in dilute aqueous solutions. J Environ Eng 138(3):375–385

    Article  CAS  Google Scholar 

  17. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414

    Article  CAS  Google Scholar 

  18. Keith L, Telliard W (1979) ES&T Special Report: priority pollutants: I-a perspective view. Environ Sci Technol 13(4):416–423

    Article  Google Scholar 

  19. Kim S, Kim YK (2004) Apparent desorption kinetics of phenol in organic solvents from spent activated carbon saturated with phenol. Chem Eng J 98(3):237–243

    Article  CAS  Google Scholar 

  20. Li X-y, Y-h C, Y-j F, Xie Z-m GJ-D (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39(10):1972–1981

    Article  CAS  Google Scholar 

  21. Lim CH, Ang JJ, Lau S, Tay MG (2017) Optimization of hydroxyl radical production using electro-Fenton method for chemical oxygen demand reduction in diluted palm oil mill effluent. Water Environ J 31(4):578–583

    Article  CAS  Google Scholar 

  22. Liu H, Zhang Z, Ren M, Guan J, Lu N, Qu J, Yuan X, Zhang YN (2018) Preparation of the CNTs/AG/ITO electrode with high electro-catalytic activity for 2-chlorophenol degradation and the potential risks from intermediates. J Hazard Mater 359:148–156

    Article  CAS  Google Scholar 

  23. Michaud PA, Panizza M, Ouattara L, Diaco T, Foti G, Comninellis C (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appl Electrochem 33(2):151–154

    Article  CAS  Google Scholar 

  24. Nava JL, Sirés I, Brillas E (2014) Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor. Environ Sci Pollut Res 21(14):8485–8492

    Article  CAS  Google Scholar 

  25. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A Review. Crit Rev Environ Sci Tech 44(23):2577–2641

    Article  CAS  Google Scholar 

  26. Panizza M (2014) Anodic oxidation of benzoquinone using diamond anode. Environ Sci Pollut Res 21(14):8451–8456

    Article  CAS  Google Scholar 

  27. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569

    Article  CAS  Google Scholar 

  28. Peralta E, Ruiz M, Martinez G, Mentado-Morales J, Zarate LG, Cordero ME, Garcia-Morales MA, Natividad R, Regalado-Mendez A (2018) Degradation of 4-Chlorophenol in a batch electrochemical reactor using BDD electrodes. Int J Electrochem Sci 13(5):4625–4639

    Article  CAS  Google Scholar 

  29. Polcaro AM, Palmas S (1997) Electrochemical oxidation of Chlorophenols. Ind Eng Chem Res 36(5):1791–1798

    Article  CAS  Google Scholar 

  30. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. J Appl Electrochem 29(2):147–151

    Article  CAS  Google Scholar 

  31. Ramírez C, Saldaña A, Hernández B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernández JM (2013) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Ind Eng Chem 19(2):571–579

    Article  Google Scholar 

  32. Regalado-Méndez A, Mentado-Morales J, Vázquez Carlos E, Martínez-Villa G, Cordero Mario E, Zárate LG, Skogestad S, Peralta-Reyes E (2018) Modeling and hydraulic characterization of a filter-press-type electrochemical reactor by using residence time distribution analysis and hydraulic indices. Int J Chem React Eng 16

  33. Skoumal M, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2008) Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere 71(9):1718–1729

    Article  CAS  Google Scholar 

  34. Tarr MA (2003) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. CRC press

  35. Yoon J, Lee B, Choi S, Won M, Shim Y (2012) Electrochemical degradation of phenol and 2-chloro phenol using Pt/Ti and boron-doped diamond electrodes. B Korean Chem Soc 33(7):2274–2278

    Article  CAS  Google Scholar 

  36. Yoon JH, Jeong ED, Shim YB, Won MS (2004) Anodic degradation of toxic aromatic compound in the flow through cell with carbon Fiber electrode. Key Eng Mat 277-279:445–449

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank PRODEP and CONACYT for the financial support (Project DSA/103/14/11350, 2014; CUP: 2 IE1503 and CONACYT No. 269093). Also, Mayra Castellanos thanks PRODEP for the scholarship to complete her bachelor thesis (Through the items ID 32643, 32646, and 32651 of the project DSA/103/14/11350, 2014; CUP: 2 IE1503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Peralta-Reyes or A. Regalado-Méndez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta-Reyes, E., Natividad, R., Castellanos, M. et al. Electro-oxidation of 2-chlorophenol with BDD electrodes in a continuous flow electrochemical reactor. J Flow Chem 10, 437–447 (2020). https://doi.org/10.1007/s41981-020-00079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00079-5

Keywords

Navigation