Skip to main content

Advertisement

Log in

Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Rechargeable batteries, which are used for renewable energy storage, have paved the way for reducing the enormous pressure of the energy crisis and environmental pollution. Recently, promising electrode materials with high energy and power density and favorable electrochemical performance for energy conversion and storage have been developed to meet the ever-growing demand for renewable power for electric vehicles or grid applications. MXenes, which constitute an impressive two-dimensional transition metal carbide/carbonitride family, exhibit great energy storage potential based on their ideal specific surface area, excellent electrical conductivity, and superior chemical durability in batteries. The recent advances in MXenes and their composites for metal-sulfur batteries (specifically lithium-sulfur and sodium-sulfur batteries) and metal-air batteries (specifically lithium-air and zinc-air batteries) are comprehensively and systematically summarized in this review. Furthermore, the performance management strategies, next-stage research prospects, and remaining practical challenges for MXene-based materials in battery applications are discussed in detail. This review may provide some guidance for the development and application of MXene-based electrode materials in renewable electrochemical energy storage.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2019, American Chemistry Society

Fig. 2
Fig. 3

Copyright © 2016, American Chemistry Society. d Li2Sn and S8 structures, e Ti3C2 structure from side and top views, and f adsorption energies and g ratio of vdW interaction of Li2Sn and S8 on Ti3C2T2 surfaces. Reprinted with permission from Ref. [86]. Copyright © 2019, American Chemistry Society

Fig. 4

Copyright © 2019, Wiley-VCH. e Fabrication of integrated a-Ti3C2-S/d-Ti3C2/PP electrodes, f synthesis of d-Ti3C2 nanosheets and the a-Ti3C2-S hybrid, g cycling stability and h rate performance comparison of different electrodes, and i cycling stability of the a-Ti3C2-S/d-Ti3C2/PP electrode at different rates. Reprinted with permission from Ref. [98]. Copyright © 2018, American Chemistry Society

Fig. 5

Copyright © 2019, WileyVCH. d Synthesis of crumpled N-Ti3C2Tx/S composites, field emission scanning electron microscopy (FESEM) image of e, f crumpled N-Ti3C2Tx nanosheets and g, h crumpled N-Ti3C2Tx/S composites, i rate performance of crumpled N-Ti3C2Tx/S electrodes and mixed-Ti3C2Tx/S electrodes, and j long-term cycling stability of crumpled N-Ti3C2Tx/S electrodes and mixed-Ti3C2Tx electrodes. Reprinted with permission from Ref. [102]. Copyright © 2018, Wiley-VCH

Fig. 6

Copyright © 2019, Elsevier. c Scheme of the preparation of a free-standing S@V2C-Li/C electrode, and d long-term cycling performance and e rate performance of S@V2C-Li/C, S@V2C/C, and S/C electrodes. Reprinted with permission from Ref. [116]. Copyright © 2020, American Chemistry Society. f Preparation of an MX/G aerogel electrode and assembled LSB, g SEM and h transmission electron microscopy (TEM) images of the MX/G-30 aerogel, i rate capability of different electrodes, and j long-term cycling performance of the MX/G-30 electrode. Reprinted with permission from Ref. [117]. Copyright © 2019, Royal Society of Chemistry

Fig. 7

Copyright © 2018, Wiley-VCH. d LiPS trapping and conversion process on a TiO2-Ti3C2Tx heterostructure, and e long-term cycling performance of Ti3C2Tx(0 h)-GN, Ti3C2Tx(4 h)-GN, Ti3C2Tx(8 h)-GN, and GN interlayers. Reprinted with permission from Ref. [136]. Copyright © 2019, Wiley-VCH. f Preparation of a VO2(p)-V2C composite, g adsorption performance test on V2C and the composite, h cycling behavior at 0.2 C of VO2(p)-V2C/S and V2C/S cathodes for 100 cycles, and i areal capacity curve of the composite. Reprinted with permission from Ref. [137]. Copyright © 2019, American Chemistry Society

Fig. 8

Copyright © 2020, Royal Society of Chemistry. e Preparation of FLPT, f formation of nanomeshes in Ti3C2Tx nanosheets, g SEM image of FLPT, and h SEM image of FLPT-S. Reprinted with permission from Ref. [148]. Copyright © 2019, American Chemistry Society. i Illustration of the preparation of TCD-TCS and TCD-TCS/S, and j schematic diagram of the evolution of active materials during the discharge process for a TC-100/S cathode. Reprinted with permission from Ref. [150]. Copyright © 2019, American Chemistry Society

Fig. 9

Copyright © 2019, American Chemistry Society

Fig. 10

Copyright © 2019, American Chemistry Society. e SEM image of V-TiO2/Ti3C2Tx, f cycling performance of the V-TiO2/Ti3C2Tx electrode, g round-trip efficiency of different electrodes, and h mechanism diagram of V-TiO2/Ti3C2Tx during discharge and charge. Reprinted with permission from Ref. [203]. Copyright © 2019, American Chemistry Society

Fig. 11

Copyright © 2019, American Chemistry Society. e Scheme of the fabrication of TiO2C@CNx nanosheets as trifunctional electrocatalysts for the hydrogen evolution reaction (HER), OER, and ORR, and f polarization and power density for a ZAB equipped with the TiO2C@CNx,950 catalyst. Reprinted with permission from Ref. [221]. Copyright © 2019, Elsevier. g SEM image of Ti3C2Tx-CoBDC hybrid nanosheets, h OER polarization curves and i corresponding Tafel plots of different electrodes, and j charge–discharge cycles of ZABs at a rate of 0.8 mA·cm−2. Reprinted with permission from Ref. [225]. Copyright © 2017, American Chemistry Society

Similar content being viewed by others

References

  1. Han, J.T., Huang, Y.H., Goodenough, J.B.: New anode framework for rechargeable lithium batteries. Chem. Mater. 23, 2027–2029 (2011). https://doi.org/10.1021/cm200441h

    Article  CAS  Google Scholar 

  2. Zhang, C.F., Higgins, T.M., Park, S.H., et al.: Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016). https://doi.org/10.1016/j.nanoen.2016.08.052

    Article  CAS  Google Scholar 

  3. Zhang, C.F., Beidaghi, M., Naguib, M., et al.: Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28, 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244

    Article  CAS  Google Scholar 

  4. Xiao, X., Zhang, C.F., Lin, S.Z., et al.: Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Mater. 1, 1–8 (2015). https://doi.org/10.1016/j.ensm.2015.05.001

    Article  Google Scholar 

  5. Gwon, H., Hong, J., Kim, H., et al.: Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7, 538–551 (2014). https://doi.org/10.1039/c3ee42927j

    Article  CAS  Google Scholar 

  6. Li, J., Yuan, Y.F., Jin, H.L., et al.: One-step nonlinear electrochemical synthesis of TexSy@PANI nanorod materials for Li-TexSy battery. Energy Storage Mater. 16, 31–36 (2019). https://doi.org/10.1016/j.ensm.2018.04.019

    Article  Google Scholar 

  7. Choi, N.S., Chen, Z.H., Freunberger, S.A., et al.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Edit 51, 9994–10024 (2012). https://doi.org/10.1002/anie.201201429

    Article  CAS  Google Scholar 

  8. Lee, W., Kim, J., Yun, S., et al.: Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy Environ. Sci. 13, 4406–4449 (2020). https://doi.org/10.1039/d0ee01277g

    Article  CAS  Google Scholar 

  9. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  10. Cui, Z.M., Zu, C.X., Zhou, W.D., et al.: Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926–6931 (2016). https://doi.org/10.1002/adma.201601382

    Article  CAS  PubMed  Google Scholar 

  11. Seh, Z.W., Sun, Y.M., Zhang, Q.F., et al.: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a

    Article  CAS  PubMed  Google Scholar 

  12. Pang, Q., Liang, X., Kwok, C.Y., et al.: Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132

    Article  CAS  Google Scholar 

  13. Pomerantseva, E., Gogotsi, Y.: Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017). https://doi.org/10.1038/nenergy.2017.89

    Article  CAS  Google Scholar 

  14. Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0

    Article  CAS  Google Scholar 

  15. Xiao, J., Li, Q.Y., Bi, Y.J., et al.: Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z

    Article  CAS  Google Scholar 

  16. Xu, Q., Li, X.F., Kheimeh Sari, H.M., et al.: Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020). https://doi.org/10.1016/j.nanoen.2020.105034

    Article  CAS  Google Scholar 

  17. Wang, X.R., Tan, G.Q., Bai, Y., et al.: Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem. Energy Rev. 4, 35–66 (2021). https://doi.org/10.1007/s41918-020-00073-4

    Article  CAS  Google Scholar 

  18. Gomes, R., Bhattacharyya, A.J.: Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem. Eng. 8, 5946–5953 (2020). https://doi.org/10.1021/acssuschemeng.0c00239

    Article  CAS  Google Scholar 

  19. Yang, H.L., Zhang, B.W., Wang, Y.X., et al.: Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 10, 2001764 (2020). https://doi.org/10.1002/aenm.202001764

    Article  CAS  Google Scholar 

  20. Chung, S.H., Manthiram, A.: Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31, 1901125 (2019). https://doi.org/10.1002/adma.201901125

    Article  CAS  Google Scholar 

  21. Wang, Y.J., Fang, B.Z., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3

    Article  CAS  Google Scholar 

  22. Chen, X.Q., Ali, I., Song, L.J., et al.: A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective. Renew. Sustain. Energy Rev. 134, 110085 (2020). https://doi.org/10.1016/j.rser.2020.110085

    Article  CAS  Google Scholar 

  23. Zhang, Y.L., Goh, K., Zhao, L., et al.: Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 12, 21534–21559 (2020). https://doi.org/10.1039/d0nr05511e

    Article  CAS  PubMed  Google Scholar 

  24. Maleki KheimehSari, H., Li, X.: Controllable cathode–electrolyte interface of Li [Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019). https://doi.org/10.1002/aenm.201901597

    Article  CAS  Google Scholar 

  25. Liu, W., Li, X.F., Xiong, D.B., et al.: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120 (2018). https://doi.org/10.1016/j.nanoen.2017.11.010

    Article  CAS  Google Scholar 

  26. Li, X., Wang, L., You, W.B., et al.: Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11, 13269–13281 (2019). https://doi.org/10.1039/C9NR02667C

    Article  CAS  PubMed  Google Scholar 

  27. Liang, C.Y., Wang, Z.F., Wu, L.N., et al.: Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735

    Article  CAS  PubMed  Google Scholar 

  28. Cui, C.H., Yan, D.X., Pang, H., et al.: A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017). https://doi.org/10.1016/j.cej.2017.04.050

    Article  CAS  Google Scholar 

  29. Wang, C., Murugadoss, V., Kong, J., et al.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006

    Article  CAS  Google Scholar 

  30. Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h

    Article  CAS  PubMed  Google Scholar 

  31. Alhabeb, M., Maleski, K., Anasori, B., et al.: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  32. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  33. Gogotsi, Y., Anasori, B.: The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  PubMed  Google Scholar 

  34. He, P., Cao, M.S., Cai, Y.Z., et al.: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009

    Article  CAS  Google Scholar 

  35. Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  36. Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970

    Article  CAS  PubMed  Google Scholar 

  37. Lukatskaya, M.R., Bak, S.M., Yu, X.Q., et al.: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015). https://doi.org/10.1002/aenm.201500589

    Article  CAS  Google Scholar 

  38. Li, Y., Shao, H., Lin, Z., et al.: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0

    Article  CAS  PubMed  Google Scholar 

  39. Natu, V., Pai, R., Sokol, M., et al.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019

    Article  CAS  Google Scholar 

  40. Pang, S.Y., Wong, Y.T., Yuan, S.G., et al.: Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578

    Article  CAS  PubMed  Google Scholar 

  41. Li, T., Yao, L., Liu, Q., et al.: Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. Engl. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887

    Article  CAS  PubMed  Google Scholar 

  42. Dong, Y.F., Shi, H.D., Wu, Z.S.: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30, 2000706 (2020). https://doi.org/10.1002/adfm.202000706

    Article  CAS  Google Scholar 

  43. Tang, X., Guo, X., Wu, W.J., et al.: 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8, 1801897 (2018). https://doi.org/10.1002/aenm.201801897

    Article  CAS  Google Scholar 

  44. Yang, J., Bao, W.Z., Jaumaux, P., et al.: MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 6, 1802004 (2019). https://doi.org/10.1002/admi.201802004

    Article  CAS  Google Scholar 

  45. Lukatskaya, M.R., Kota, S., Lin, Z.F., et al.: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105

    Article  CAS  Google Scholar 

  46. Wang, Y.M., Wang, X., Li, X.F., et al.: A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2021). https://doi.org/10.1002/adfm.202008185

    Article  CAS  Google Scholar 

  47. Lei, Y.J., Yan, Z.C., Lai, W.H., et al.: Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem. Energy Rev. 3, 766–792 (2020). https://doi.org/10.1007/s41918-020-00079-y

    Article  CAS  Google Scholar 

  48. Hui, X.B., Ge, X.L., Zhao, R.Z., et al.: Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190

    Article  CAS  Google Scholar 

  49. Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv. Funct. Mater. 30, 2003437 (2020). https://doi.org/10.1002/adfm.202003437

    Article  CAS  Google Scholar 

  50. Li, Z., Wu, Y.: 2D early transition metal carbides (MXenes) for catalysis. Small 15, 1804736 (2019). https://doi.org/10.1002/smll.201804736

    Article  CAS  Google Scholar 

  51. Liang, X., Ren, X., Yang, Q., et al.: A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13, 2843–2848 (2021). https://doi.org/10.1039/d0nr08744k

    Article  CAS  PubMed  Google Scholar 

  52. George, S.M., Kandasubramanian, B.: Advancements in MXene-polymer composites for various biomedical applications. Ceram. Int. 46, 8522–8535 (2020). https://doi.org/10.1016/j.ceramint.2019.12.257

    Article  CAS  Google Scholar 

  53. Lin, H., Chen, Y., Shi, J.L.: Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018). https://doi.org/10.1002/advs.201800518

    Article  CAS  Google Scholar 

  54. Iqbal, A., Sambyal, P., Koo, C.M.: 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883

    Article  CAS  Google Scholar 

  55. Raagulan, K., Kim, B.M., Chai, K.Y.: Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10, 702 (2020). https://doi.org/10.3390/nano10040702

    Article  CAS  PubMed Central  Google Scholar 

  56. Xu, D.X., Li, Z.D., Li, L.S., et al.: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712

    Article  CAS  Google Scholar 

  57. Li, N., Xie, Y., Peng, S.T., et al.: Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014

    Article  Google Scholar 

  58. Zhao, R.Z., Di, H.X., Hui, X.B., et al.: Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13, 246–257 (2020). https://doi.org/10.1039/C9EE03250A

    Article  CAS  Google Scholar 

  59. Zhang, F., Jia, Z.R., Wang, C., et al.: Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery. Energy 195, 117047 (2020). https://doi.org/10.1016/j.energy.2020.117047

    Article  CAS  Google Scholar 

  60. Zuo, D.C., Song, S.C., An, C.S., et al.: Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062

    Article  CAS  Google Scholar 

  61. Xu, M., Lei, S.L., Qi, J., et al.: Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., Mu, Z., Lai, J., et al.: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821

    Article  CAS  PubMed  Google Scholar 

  63. Pang, Q., Shyamsunder, A., Narayanan, B., et al.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0

    Article  CAS  Google Scholar 

  64. Conder, J., Bouchet, R., Trabesinger, S., et al.: Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017). https://doi.org/10.1038/nenergy.2017.69

    Article  CAS  Google Scholar 

  65. Liu, Y.T., Liu, S., Li, G.R., et al.: Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33, 2003955 (2021). https://doi.org/10.1002/adma.202003955

    Article  CAS  Google Scholar 

  66. Evers, S., Nazar, L.F.: New approaches for high energy density lithium-sulfur battery cathodes. Accounts Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348

    Article  CAS  Google Scholar 

  67. Fang, R.P., Zhao, S.Y., Sun, Z.H., et al.: More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823

    Article  CAS  Google Scholar 

  68. Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h

    Article  CAS  PubMed  Google Scholar 

  69. Manthiram, A., Chung, S.H., Zu, C.X.: Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015). https://doi.org/10.1002/adma.201405115

    Article  CAS  PubMed  Google Scholar 

  70. Li, S.P., Zhang, W., Zeng, Z.Q., et al.: Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem. Energy Rev. 3, 613–642 (2020). https://doi.org/10.1007/s41918-020-00072-5

    Article  CAS  Google Scholar 

  71. Zhang, G., Peng, H.J., Zhao, C.Z., et al.: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Edit 57, 16732–16736 (2018). https://doi.org/10.1002/anie.201810132

    Article  CAS  Google Scholar 

  72. Chen, C.Y., Peng, H.J., Hou, T.Z., et al.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 29, 1606802 (2017). https://doi.org/10.1002/adma.201606802

    Article  CAS  Google Scholar 

  73. Li, S.L., Zhang, W.F., Zheng, J.F., et al.: Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11, 2000779 (2021). https://doi.org/10.1002/aenm.202000779

    Article  CAS  Google Scholar 

  74. Zuo, J.H., Gong, Y.J.: Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten 2, 134–146 (2020). https://doi.org/10.1007/s42864-020-00046-6

    Article  Google Scholar 

  75. Tao, X., Wang, J., Liu, C., et al.: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7, 11203 (2016). https://doi.org/10.1038/ncomms11203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi, H.F., Lv, W., Zhang, C., et al.: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 28, 1800508 (2018). https://doi.org/10.1002/adfm.201800508

    Article  CAS  Google Scholar 

  77. Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Edit 56, 8178–8182 (2017). https://doi.org/10.1002/anie.201704324

    Article  CAS  Google Scholar 

  78. Tan, G.Q., Xu, R., Xing, Z.Y., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 17090 (2017). https://doi.org/10.1038/nenergy.2017.90

    Article  CAS  Google Scholar 

  79. Xiong, D.B., Li, X.F., Bai, Z.M., et al.: Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018). https://doi.org/10.1002/smll.201703419

    Article  CAS  Google Scholar 

  80. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Edit 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174

    Article  CAS  Google Scholar 

  81. Liu, X.B., Shao, X.F., Li, F., et al.: Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 455, 522–526 (2018). https://doi.org/10.1016/j.apsusc.2018.05.200

    Article  CAS  Google Scholar 

  82. Rao, D.W., Zhang, L.Y., Wang, Y.H., et al.: Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017). https://doi.org/10.1021/acs.jpcc.7b00492

    Article  CAS  Google Scholar 

  83. Song, J.J., Su, D.W., Xie, X.Q., et al.: Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016). https://doi.org/10.1021/acsami.6b09027

    Article  CAS  PubMed  Google Scholar 

  84. Sim, E.S., Yi, G.S., Je, M., et al.: Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: a density functional theory study. J. Power Sources 342, 64–69 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.042

    Article  CAS  Google Scholar 

  85. Sim, E.S., Chung, Y.C.: Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: a first-principles calculation. Appl. Surf. Sci. 435, 210–215 (2018). https://doi.org/10.1016/j.apsusc.2017.11.101

    Article  CAS  Google Scholar 

  86. Wang, D.S., Li, F., Lian, R.Q., et al.: A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2Tx MXene in lithium-sulfur batteries. ACS Nano 13, 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412

    Article  CAS  PubMed  Google Scholar 

  87. Lin, H., Yang, D.D., Lou, N., et al.: Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: a first principles study. Ceram. Int. 45, 1588–1594 (2019). https://doi.org/10.1016/j.ceramint.2018.10.033

    Article  CAS  Google Scholar 

  88. Fang, M., Liu, X.Y., Ren, J.C., et al.: Revisiting the anchoring behavior in lithium-sulfur batteries: many-body effect on the suppression of shuttle effect. Npj Comput. Mater. 6, 8 (2020). https://doi.org/10.1038/s41524-020-0273-1

    Article  CAS  Google Scholar 

  89. Zhao, Y.M., Zhao, J.X.: Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl. Surf. Sci. 412, 591–598 (2017). https://doi.org/10.1016/j.apsusc.2017.04.013

    Article  CAS  Google Scholar 

  90. Wang, Y.T., Shen, J.L., Xu, L.C., et al.: Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries. Phys. Chem. Chem. Phys. 21, 18559–18568 (2019). https://doi.org/10.1039/c9cp03419f

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, X.Q., Liu, M., Chen, Y., et al.: Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3, 7870–7876 (2015). https://doi.org/10.1039/c4ta07101h

    Article  CAS  Google Scholar 

  92. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979–3983 (2015). https://doi.org/10.1002/ange.201410174

    Article  Google Scholar 

  93. Pan, H., Huang, X.X., Zhang, R., et al.: Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 358, 1253–1261 (2019). https://doi.org/10.1016/j.cej.2018.10.026

    Article  CAS  Google Scholar 

  94. Zhang, F., Zhou, Y.L., Zhang, Y., et al.: Facile synthesis of sulfur@titanium carbide MXene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9, 2025–2032 (2020). https://doi.org/10.1515/nanoph-2019-0568

    Article  CAS  Google Scholar 

  95. Tang, H., Li, W.L., Pan, L.M., et al.: In situ formed protective barrier enabled by Sulfur@Titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5, 1800502 (2018). https://doi.org/10.1002/advs.201800502

    Article  CAS  Google Scholar 

  96. Tang, H., Li, W.L., Pan, L.M., et al.: A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 29, 1901907 (2019). https://doi.org/10.1002/adfm.201901907

    Article  CAS  Google Scholar 

  97. Zhang, S.Z., Zhong, N., Zhou, X., et al.: Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-00449-7

    Article  CAS  Google Scholar 

  98. Dong, Y.F., Zheng, S.H., Qin, J.Q., et al.: All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672

    Article  CAS  PubMed  Google Scholar 

  99. Yao, Y., Feng, W.L., Chen, M.L., et al.: Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small 14, 1802516 (2018). https://doi.org/10.1002/smll.201802516

    Article  CAS  Google Scholar 

  100. Wang, X.W., Yang, C.H., Xiong, X.H., et al.: A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015

    Article  Google Scholar 

  101. Huang, X., Tang, J.Y., Luo, B., et al.: Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872

    Article  CAS  Google Scholar 

  102. Bao, W.Z., Liu, L., Wang, C.Y., et al.: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485

    Article  CAS  Google Scholar 

  103. Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  Google Scholar 

  104. Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

    Article  CAS  Google Scholar 

  105. Zhou, G.M., Pei, S.F., Li, L., et al.: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014). https://doi.org/10.1002/adma.201302877

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y.Q., Tang, W.W., Zhan, R.M., et al.: An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 6, 2894–2899 (2019). https://doi.org/10.1039/c9qi00723g

    Article  CAS  Google Scholar 

  107. Jiang, G.Y., Zheng, N., Chen, X., et al.: In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119

    Article  CAS  Google Scholar 

  108. Wang, J.T., Zhao, T.K., Yang, Z.H., et al.: MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 11, 38654–38662 (2019). https://doi.org/10.1021/acsami.9b11988

    Article  CAS  PubMed  Google Scholar 

  109. Song, Y.Z., Sun, Z.T., Fan, Z.D., et al.: Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555

    Article  CAS  Google Scholar 

  110. Wang, J.L., Zhang, Z., Yan, X.F., et al.: Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano- Micro Lett. 12, 1–14 (2019). https://doi.org/10.1007/s40820-019-0341-6

    Article  CAS  Google Scholar 

  111. Fang, R.P., Chen, K., Yin, L.C., et al.: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31, 1800863 (2019). https://doi.org/10.1002/adma.201800863

    Article  CAS  Google Scholar 

  112. Wang, Y.K., Zhang, R.F., Chen, J., et al.: Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953

    Article  CAS  Google Scholar 

  113. Lv, L.P., Guo, C.F., Sun, W.W., et al.: Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 15, 1804338 (2019). https://doi.org/10.1002/smll.201804338

    Article  CAS  Google Scholar 

  114. Li, N., Cao, W.Y., Liu, Y.W., et al.: Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Coll. Surf. APhysicochem. Eng. Asp. 573, 128–136 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.054

    Article  CAS  Google Scholar 

  115. Guo, D., Ming, F.W., Su, H., et al.: MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011

    Article  CAS  Google Scholar 

  116. Chen, Z., Yang, X.B., Qiao, X., et al.: Lithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J. Phys. Chem. Lett. 11, 885–890 (2020). https://doi.org/10.1021/acs.jpclett.9b03827

    Article  CAS  PubMed  Google Scholar 

  117. Song, J.J., Guo, X., Zhang, J.Q., et al.: Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7, 6507–6513 (2019). https://doi.org/10.1039/c9ta00212j

    Article  CAS  Google Scholar 

  118. Cong, L.N., Xie, H.M., Li, J.H.: Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 7, 1601906 (2017). https://doi.org/10.1002/aenm.201601906

    Article  CAS  Google Scholar 

  119. Lv, X., Lei, T., Wang, B.J., et al.: An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Adv. Energy Mater. 9, 1901800 (2019). https://doi.org/10.1002/aenm.201901800

    Article  CAS  Google Scholar 

  120. Liu, X.J., Hao, Y.C., Shu, J., et al.: Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414–423 (2019). https://doi.org/10.1016/j.nanoen.2018.12.024

    Article  CAS  Google Scholar 

  121. Wang, B., Ruan, T.T., Chen, Y., et al.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004

    Article  Google Scholar 

  122. Han, J.W., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z

    Article  CAS  Google Scholar 

  123. Bao, W.Z., Xie, X.Q., Xu, J., et al.: Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. A Eur. J. 23, 12613–12619 (2017). https://doi.org/10.1002/chem.201702387

    Article  CAS  Google Scholar 

  124. Li, W.T., Zhang, Y.F., Li, H., et al.: Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batter. Supercaps 3, 892–899 (2020). https://doi.org/10.1002/batt.202000062

    Article  CAS  Google Scholar 

  125. Wang, Z.Y., Zhang, N., Yu, M.L., et al.: Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. J. Energy Chem. 37, 183–191 (2019). https://doi.org/10.1016/j.jechem.2019.03.012

    Article  Google Scholar 

  126. Liu, P., Qu, L., Tian, X.L., et al.: Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3, 2708–2718 (2020). https://doi.org/10.1021/acsaem.9b02385

    Article  CAS  Google Scholar 

  127. Liang, P., Zhang, L., Wang, D., et al.: First-principles explorations of Li2S@V2CTx hybrid structure as cathode material for lithium-sulfur battery. Appl. Surf. Sci. 489, 677–683 (2019). https://doi.org/10.1016/j.apsusc.2019.06.033

    Article  CAS  Google Scholar 

  128. Pourali, Z., Yaftian, M.R., Sovizi, M.R.: Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries. Mater. Chem. Phys. 217, 117–124 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.074

    Article  CAS  Google Scholar 

  129. Seh, Z.W., Li, W.Y., Cha, J.J., et al.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327

    Article  CAS  Google Scholar 

  130. Chen, Y., Choi, S., Su, D.W., et al.: Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 47, 331–339 (2018). https://doi.org/10.1016/j.nanoen.2018.03.008

    Article  CAS  Google Scholar 

  131. Sun, Q., Xi, B.J., Li, J.Y., et al.: Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 8, 1800595 (2018). https://doi.org/10.1002/aenm.201800595

    Article  CAS  Google Scholar 

  132. Ye, C., Zhang, L., Guo, C.X., et al.: A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702524 (2017). https://doi.org/10.1002/adfm.201702524

    Article  CAS  Google Scholar 

  133. Qin, J., Sari, H.M.K., Wang, X.J., et al.: Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: synergistic mechanisms of hybrid ion storage. Nano Energy 71, 104594 (2020). https://doi.org/10.1016/j.nanoen.2020.104594

    Article  CAS  Google Scholar 

  134. Gao, X.T., Xie, Y., Zhu, X.D., et al.: Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018). https://doi.org/10.1002/smll.201802443

    Article  CAS  Google Scholar 

  135. Du, C., Wu, J., Yang, P., et al.: Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta 295, 1067–1074 (2019). https://doi.org/10.1016/j.electacta.2018.11.143

    Article  CAS  Google Scholar 

  136. Jiao, L., Zhang, C., Geng, C.N., et al.: Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019). https://doi.org/10.1002/aenm.201900219

    Article  CAS  Google Scholar 

  137. Wang, Z.G., Yu, K., Feng, Y., et al.: VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 11, 44282–44292 (2019). https://doi.org/10.1021/acsami.9b15586

    Article  CAS  PubMed  Google Scholar 

  138. Qiu, S.Y., Wang, C., Jiang, Z.X., et al.: Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12, 16678–16684 (2020). https://doi.org/10.1039/d0nr03528a

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, H., Qi, Q., Zhang, P.G., et al.: Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater. 2, 705–714 (2019). https://doi.org/10.1021/acsaem.8b01765

    Article  CAS  Google Scholar 

  140. Zhang, D., Wang, S., Hu, R.M., et al.: Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30, 2002471 (2020). https://doi.org/10.1002/adfm.202002471

    Article  CAS  Google Scholar 

  141. Fang, X.P., Guo, X.W., Mao, Y., et al.: Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem. Asian J. 7, 1013–1017 (2012). https://doi.org/10.1002/asia.201100796

    Article  CAS  PubMed  Google Scholar 

  142. Xue, W.J., Shi, Z., Suo, L.M., et al.: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0

    Article  CAS  Google Scholar 

  143. Zhang, Y.L., Mu, Z.J., Yang, C., et al.: Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018). https://doi.org/10.1002/adfm.201707578

    Article  CAS  Google Scholar 

  144. Zhou, H.Y., Sui, Z.Y., Amin, K., et al.: Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 13904–13913 (2020). https://doi.org/10.1021/acsami.9b23006

    Article  CAS  PubMed  Google Scholar 

  145. Qi, Q., Zhang, H., Zhang, P.G., et al.: Self-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater. 7, 025049 (2020). https://doi.org/10.1088/2053-1583/ab79c1

    Article  CAS  Google Scholar 

  146. Gan, R.Y., Yang, N., Dong, Q., et al.: Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 8, 7253–7260 (2020). https://doi.org/10.1039/d0ta02374d

    Article  CAS  Google Scholar 

  147. Fang, Q., Fang, M., Liu, X.Y., et al.: An asymmetric Ti2CO/WS2 heterostructure as a promising anchoring material for lithium-sulfur batteries. J. Mater. Chem. A 8, 13770–13775 (2020). https://doi.org/10.1039/d0ta04187d

    Article  CAS  Google Scholar 

  148. Xiao, Z.B., Yang, Z., Li, Z.L., et al.: Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13, 3404–3412 (2019). https://doi.org/10.1021/acsnano.8b09296

    Article  CAS  PubMed  Google Scholar 

  149. Lee, D.K., Chae, Y., Yun, H., et al.: CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 14, 9744–9754 (2020). https://doi.org/10.1021/acsnano.0c01452

    Article  CAS  PubMed  Google Scholar 

  150. Xiao, Z.B., Li, Z.L., Li, P.Y., et al.: Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 13, 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177

    Article  CAS  PubMed  Google Scholar 

  151. Yin, L.X., Xu, G.Y., Nie, P., et al.: MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J. 352, 695–703 (2018). https://doi.org/10.1016/j.cej.2018.07.063

    Article  CAS  Google Scholar 

  152. Zhao, Q., Zhu, Q.Z., Miao, J.W., et al.: 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h

    Article  CAS  PubMed  Google Scholar 

  153. Wang, J.T., Zhai, P.F., Zhao, T.K., et al.: Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 320, 134558 (2019). https://doi.org/10.1016/j.electacta.2019.134558

    Article  CAS  Google Scholar 

  154. Manthiram, A., Yu, X.: Ambient temperature sodium-sulfur batteries. Small 11, 2108–2114 (2015)

    Article  CAS  PubMed  Google Scholar 

  155. Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Curr. Opin. Sol. State Mater. Sci. 16, 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  156. Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126

    Article  CAS  PubMed  Google Scholar 

  157. Kim, I., Park, J.Y., Kim, C.H., et al.: A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sourc. 301, 332–337 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.120

    Article  CAS  Google Scholar 

  158. Xu, X., Zhou, D., Qin, X., et al.: A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, S.Q., Bao, P.T., Wang, G.X.: Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2, 425–434 (2013). https://doi.org/10.1016/j.nanoen.2012.11.012

    Article  CAS  Google Scholar 

  160. Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries. Adv. Energy Mater. 9, 1803843 (2019). https://doi.org/10.1002/aenm.201803843

    Article  CAS  Google Scholar 

  161. Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829

    Article  CAS  Google Scholar 

  162. Huo, X.G., Liu, Y.Y., Li, R.R., et al.: Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics 25, 5373–5382 (2019). https://doi.org/10.1007/s11581-019-03074-6

    Article  CAS  Google Scholar 

  163. Bao, W.Z., Shuck, C.E., Zhang, W.X., et al.: Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019). https://doi.org/10.1021/acsnano.9b04977

    Article  CAS  PubMed  Google Scholar 

  164. Yang, Q.J., Yang, T.T., Gao, W., et al.: An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg. Chem. Front. 7, 4396–4403 (2020). https://doi.org/10.1039/d0qi00939c

    Article  CAS  Google Scholar 

  165. Cao, J., Chen, C., Zhao, Q., et al.: A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 28, 9629–9636 (2016). https://doi.org/10.1002/adma.201602262

    Article  CAS  PubMed  Google Scholar 

  166. Jia, Z.Y., Zhang, H.Z., Yu, Y., et al.: Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application. J. Energy Chem. 43, 71–77 (2020). https://doi.org/10.1016/j.jechem.2019.06.005

    Article  Google Scholar 

  167. Mammoottil Abraham, A., Kammampata, S.P., Ponnurangam, S., et al.: Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li-S battery: combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 11, 35729–35737 (2019). https://doi.org/10.1021/acsami.9b11967

    Article  CAS  PubMed  Google Scholar 

  168. Xu, S., Zhang, L., Zhang, X.P., et al.: A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries. J. Mater. Chem. A 5, 12904–12913 (2017). https://doi.org/10.1039/c7ta02110k

    Article  CAS  Google Scholar 

  169. Wang, Y., Yang, L.W., Chen, Y.X., et al.: Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 57859–57869 (2020). https://doi.org/10.1021/acsami.0c16631

    Article  CAS  PubMed  Google Scholar 

  170. Han, J.M., Xi, B.J., Feng, Z.Y., et al.: Sulfur-hydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithium-sulfur batteries. Inorg. Chem. Front. 5, 785–792 (2018). https://doi.org/10.1039/c7qi00726d

    Article  CAS  Google Scholar 

  171. Ma, J.S., Yu, M.P., Ye, H.Y., et al.: A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium-sulfur batteries. Mater. Chem. Front. 3, 1807–1815 (2019). https://doi.org/10.1039/c9qm00228f

    Article  CAS  Google Scholar 

  172. Zhen, M.M., Guo, S.Q., Shen, B.X.: Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium-sulfur batteries. ACS Sustain. Chem. Eng. 8, 13318–13327 (2020). https://doi.org/10.1021/acssuschemeng.0c03887

    Article  CAS  Google Scholar 

  173. Wang, R.R., Chen, Z.L., Sun, Y.Q., et al.: Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686

    Article  CAS  Google Scholar 

  174. Hong, X.H., Jin, J., Wu, T., et al.: A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. J. Mater. Chem. A 5, 14775–14782 (2017). https://doi.org/10.1039/c7ta03552g

    Article  CAS  Google Scholar 

  175. Wang, X.L., Li, G.R., Li, M.J., et al.: Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036

    Article  Google Scholar 

  176. Walle, M.D., Zeng, K., Zhang, M.Y., et al.: Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithium-sulfur battery cathodes. Appl. Surf. Sci. 473, 540–547 (2019). https://doi.org/10.1016/j.apsusc.2018.12.169

    Article  CAS  Google Scholar 

  177. Zensich, M., Jaumann, T., Morales, G.M., et al.: A top-down approach to build Li2S@rGO cathode composites for high-loading lithium-sulfur batteries in carbonate-based electrolyte. Electrochim. Acta 296, 243–250 (2019). https://doi.org/10.1016/j.electacta.2018.10.184

    Article  CAS  Google Scholar 

  178. Song, J.H., Zheng, J.M., Feng, S., et al.: Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018). https://doi.org/10.1016/j.carbon.2017.11.042

    Article  CAS  Google Scholar 

  179. Yao, S.S., Wang, Y.Q., He, Y.P., et al.: Synergistic effect of titanium-oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithium-sulfur batteries. Int. J. Energy Res. 44, 10937–10945 (2020). https://doi.org/10.1002/er.5671

    Article  CAS  Google Scholar 

  180. Xu, J., Li, T.X., Zhang, W.X., et al.: Propelling the polysulfide phase transformation of lithium-sulfur battery by VO2-rGO. J. Alloy. Compd. 804, 549–553 (2019). https://doi.org/10.1016/j.jallcom.2019.06.232

    Article  CAS  Google Scholar 

  181. Zhang, J., Li, J.Y., Wang, W.P., et al.: Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 8, 1702839 (2018). https://doi.org/10.1002/aenm.201702839

    Article  CAS  Google Scholar 

  182. Wei, Y.J., Kong, Z.K., Pan, Y.K., et al.: Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A 6, 5899–5909 (2018). https://doi.org/10.1039/c8ta00222c

    Article  CAS  Google Scholar 

  183. Pan, H., Cheng, Z.B., Zhang, X., et al.: Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 8, 21824–21832 (2020). https://doi.org/10.1039/d0ta05021k

    Article  CAS  Google Scholar 

  184. You, Y., Ye, Y.W., Wei, M.L., et al.: Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019). https://doi.org/10.1016/j.cej.2018.08.176

    Article  CAS  Google Scholar 

  185. Majumder, S., Shao, M.H., Deng, Y.F., et al.: Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045

    Article  CAS  Google Scholar 

  186. Wang, N.N., Wang, J., Zhao, J.J., et al.: Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries. J. Alloy. Compd. 851, 156832 (2021). https://doi.org/10.1016/j.jallcom.2020.156832

    Article  CAS  Google Scholar 

  187. Li, H.H., Chen, H.Q., Xue, Y., et al.: Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li-S batteries. Adv. Energy Mater. 10, 2001683 (2020). https://doi.org/10.1002/aenm.202001683

    Article  CAS  Google Scholar 

  188. Wang, H.E., Li, X.C., Qin, N., et al.: Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 7, 12068–12074 (2019). https://doi.org/10.1039/c9ta01722d

    Article  CAS  Google Scholar 

  189. Han, S.C., Pu, X., Li, X.L., et al.: High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim. Acta 241, 406–413 (2017). https://doi.org/10.1016/j.electacta.2017.05.005

    Article  CAS  Google Scholar 

  190. Bian, Z.H., Yuan, T., Xu, Y., et al.: Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150, 216–223 (2019). https://doi.org/10.1016/j.carbon.2019.05.022

    Article  CAS  Google Scholar 

  191. Tian, C.X., Li, B., Hu, X., et al.: Melamine foam derived 2H/1T MoS2 as flexible interlayer with efficient polysulfides trapping and fast Li+ diffusion to stabilize Li-S batteries. ACS Appl. Mater. Interfaces 13, 6229–6240 (2021). https://doi.org/10.1021/acsami.0c19725

    Article  CAS  PubMed  Google Scholar 

  192. Shao, Y.Y., Ding, F., Xiao, J., et al.: Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013). https://doi.org/10.1002/adfm.201200688

    Article  CAS  Google Scholar 

  193. Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). https://doi.org/10.1021/jz1005384

    Article  CAS  Google Scholar 

  194. Cheng, F.Y., Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a

    Article  CAS  PubMed  Google Scholar 

  195. Peng, Z.Q., Freunberger, S.A., Chen, Y.H., et al.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012). https://doi.org/10.1126/science.1223985

    Article  CAS  PubMed  Google Scholar 

  196. Gao, X.W., Chen, Y.H., Johnson, L.R., et al.: A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017). https://doi.org/10.1038/nenergy.2017.118

    Article  CAS  Google Scholar 

  197. Ogasawara, T., Debart, A., Holzapfel, M., et al.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006). https://doi.org/10.1021/ja056811q

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, G.Q., Zheng, J.P., Liang, R., et al.: Lithium-air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157, A953 (2010). https://doi.org/10.1149/1.3446852

    Article  CAS  Google Scholar 

  199. Luntz, A.C., McCloskey, B.D.: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y

    Article  CAS  PubMed  Google Scholar 

  200. Wang, Z.Y., Chen, X., Shen, F., et al.: TiC MXene high energy density cathode for lithium-air battery. Adv. Theory Simulations 1, 1800059 (2018). https://doi.org/10.1002/adts.201800059

    Article  CAS  Google Scholar 

  201. Ostadhossein, A., Guo, J., Simeski, F., et al.: Functionalization of 2D materials for enhancing OER/ORR catalytic activity in Li-oxygen batteries. Commun. Chem. 2, 95 (2019). https://doi.org/10.1038/s42004-019-0196-2

    Article  Google Scholar 

  202. Sun, Z.M., Yuan, M.W., Lin, L., et al.: Perovskite La0.5Sr0.5CoO3–δ grown on Ti3C2Tx MXene nanosheets as bifunctional efficient hybrid catalysts for Li-oxygen batteries. ACS Appl. Energy Mater. 2, 4144–4150 (2019). https://doi.org/10.1021/acsaem.9b00328

    Article  CAS  Google Scholar 

  203. Zheng, R.X., Shu, C.Z., Hou, Z.Q., et al.: In situ fabricating oxygen vacancy-rich TiO2 nanoparticles via utilizing thermodynamically metastable Ti atoms on Ti3C2Tx MXene nanosheet surface to boost electrocatalytic activity for high-performance Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 46696–46704 (2019). https://doi.org/10.1021/acsami.9b14783

  204. Wang, H., Wang, H.J., Huang, J.S., et al.: Hierarchical mesoporous/macroporous Co-doped NiO nanosheet arrays as free-standing electrode materials for rechargeable Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 44556–44565 (2019). https://doi.org/10.1021/acsami.9b13329

    Article  CAS  Google Scholar 

  205. de Wu, S., Liu, J.M., Cui, B.B., et al.: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim. Acta 299, 231–244 (2019). https://doi.org/10.1016/j.electacta.2019.01.012

    Article  CAS  Google Scholar 

  206. Tian, J.Y., Shao, Q., Dong, X.J., et al.: Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim. Acta 261, 236–245 (2018). https://doi.org/10.1016/j.electacta.2017.12.094

    Article  CAS  Google Scholar 

  207. Wen, C.Y., Zhu, T.J., Li, X.Y., et al.: Nanostructured Ni/ Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery. Chin. Chem. Lett. 31, 1000–1003 (2020). https://doi.org/10.1016/j.cclet.2019.09.028

    Article  CAS  Google Scholar 

  208. Li, X.Y., Wen, C.Y., Yuan, M.W., et al.: Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J. Alloy. Compd. 824, 153803 (2020). https://doi.org/10.1016/j.jallcom.2020.153803

    Article  CAS  Google Scholar 

  209. Lee, A., Krishnamurthy, D., Viswanathan, V.: Exploring MXenes as cathodes for non-aqueous lithium-oxygen batteries: design rules for selectively nucleating Li2O2. Chemsuschem 11, 1911–1918 (2018). https://doi.org/10.1002/cssc.201801224

    Article  CAS  PubMed  Google Scholar 

  210. Li, Y.B., Fu, J., Zhong, C., et al.: Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9, 1802605 (2019). https://doi.org/10.1002/aenm.201802605

    Article  CAS  Google Scholar 

  211. Zhang, M.D., Dai, Q.B., Zheng, H.G., et al.: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431

    Article  CAS  Google Scholar 

  212. Ma, L., Schroeder, M.A., Borodin, O., et al.: Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x

    Article  CAS  Google Scholar 

  213. Zhu, X.F., Hu, C.G., Amal, R., et al.: Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13, 4536–4563 (2020). https://doi.org/10.1039/d0ee02800b

    Article  CAS  Google Scholar 

  214. Meng, F.L., Liu, K.H., Zhang, Y., et al.: Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018). https://doi.org/10.1002/smll.201703843

    Article  CAS  Google Scholar 

  215. Meng, F., Zhong, H., Bao, D., et al.: In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046

    Article  CAS  PubMed  Google Scholar 

  216. Wu, M.J., Zhang, G.X., Du, L., et al.: Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives. Small Methods 5, 2000868 (2021). https://doi.org/10.1002/smtd.202000868

    Article  CAS  Google Scholar 

  217. Luo, M.H., Sun, W.P., Xu, B.B., et al.: Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 11, 2002762 (2021). https://doi.org/10.1002/aenm.202002762

    Article  CAS  Google Scholar 

  218. Xue, Q., Pei, Z.X., Huang, Y., et al.: Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 5, 20818–20823 (2017). https://doi.org/10.1039/c7ta04532h

    Article  CAS  Google Scholar 

  219. Wu, Z.H., Wang, H., Xiong, P., et al.: Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable zinc-air batteries. Nano Lett. 20, 2892–2898 (2020). https://doi.org/10.1021/acs.nanolett.0c00717

    Article  CAS  PubMed  Google Scholar 

  220. Zeng, Z.P., Fu, G.T., Yang, H.B., et al.: Bifunctional N-CoSe2/3D-MXene as highly efficient and durable cathode for rechargeable Zn-air battery. ACS Mater. Lett. 1, 432–439 (2019). https://doi.org/10.1021/acsmaterialslett.9b00337

    Article  CAS  Google Scholar 

  221. He, L.H., Liu, J.M., Liu, Y.K., et al.: Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B Environ. 248, 366–379 (2019). https://doi.org/10.1016/j.apcatb.2019.02.033

    Article  CAS  Google Scholar 

  222. Ma, T.Y., Cao, J.L., Jaroniec, M., et al.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Edit 128, 1150–1154 (2016). https://doi.org/10.1002/ange.201509758

    Article  Google Scholar 

  223. Lu, X.F., Gu, L.F., Wang, J.W., et al.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017). https://doi.org/10.1002/adma.201604437

    Article  CAS  Google Scholar 

  224. Wang, S.B., Wang, X.C.: Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015). https://doi.org/10.1002/smll.201500084

    Article  CAS  PubMed  Google Scholar 

  225. Zhao, L., Dong, B., Li, S., et al.: Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11, 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409

    Article  CAS  PubMed  Google Scholar 

  226. Zou, H., He, B., Kuang, P., et al.: Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 10, 22311–22319 (2018). https://doi.org/10.1021/acsami.8b06272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Supercomputing Center of Dalian University of Technology for this work is gratefully acknowledged. The support of the National Natural Science Foundation of China (21902021, 21908017, 51972293, and 51772039), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (20180510020), and the Fundamental Research Funds for the Central Universities (DUT20RC(4)020 and DUT20RC(4)018) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anmin Liu, Xuefeng Ren or Tingli Ma.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Liang, X., Ren, X. et al. Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes. Electrochem. Energy Rev. 5, 112–144 (2022). https://doi.org/10.1007/s41918-021-00110-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00110-w

Keywords

Navigation