Skip to main content

Advertisement

Log in

Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The electrochemical oxygen evolution reaction (OER) plays an important role in many clean electrochemical energy storage and conversion systems, such as electrochemical water splitting, rechargeable metal–air batteries, and electrochemical CO2 reduction. However, the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics, which greatly impairs the efficiency of electrochemical systems. In addition, state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications. The development of highly active, cost-effective, and durable electrocatalysts that can improve OER performance (activity and durability) is of significant importance in realizing the widespread application of these advanced technologies. To date, considerable progress has been made in the development of alternative, noble metal-free OER electrocatalysts. Among these alternative catalysts, transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts. In contrast to many other electrocatalysts, such as carbon-based materials, transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes. This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance. Therefore, understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts. This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts, focusing on uncovering the correlations among structure, surface reconstruction and intrinsic activity. Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed. We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction. We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [13]. Copyright 2017, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [17]. Copyright 2018, Science China Press

Fig. 5

Reproduced with permission from Ref. [38]. Copyright 2019, Elsevier

Fig. 6
Fig. 7
Fig. 8

Reproduced with permission from Ref. [114]. Copyright 2019, Springer Nature. b The setup scheme for in situ XAS of electrocatalysts. Reproduced with permission from Ref. [115]. Copyright 2018, Springer Nature

Fig. 9

Reproduced with permission from Ref. [118]. Copyright 2016, Wiley–VCH. b Schematic diagram of the in situ Raman setup combined with electrochemical measurements. Reproduced with permission from Ref. [119]. Copyright 2019, Elsevier

Fig. 10

Reproduced with permission from Ref. [125]. Copyright 2017, Royal Society of Chemistry

Fig. 11

Reproduced with permission from Ref. [131]. Copyright 2016, Elsevier. b In situ FTIR spectra of metal sulfides during the OER. Reproduced with permission from Ref. [42]. Copyright 2018, American Chemistry Society

Fig. 12

Reproduced with permission from Ref. [137]. Copyright 2017, Elsevier. b Co 2p, c P 2p, d O 1s XPS spectra. Reproduced with permission from Ref. [43]. Copyright 2018, American Chemistry Society

Fig. 13

Reproduced with permission from Ref. [145]. Copyright 2019, Royal Society of Chemistry

Fig. 14
Fig. 15

Reproduced with permission from Ref. [146]. Copyright 2020, American Chemistry Society. b Schematic diagram of Fe replacing Al to activate CoAl2O4 surface reconstruction and form active CoOOH. Reproduced with permission from Ref. [46]. Copyright 2019, Springer Nature. c Schematic diagram of the adsorbate evolution mechanism (x  =  0, 0.2 and 0.4) and the mechanism underlying the evolution of participating lattice oxygen (x = 0.6 and 0.8) in ZnCo2−xNixO4. Reproduced with permission from Ref. [48]. Copyright 2019, Wiley–VCH

Fig. 16

Reproduced with permission from Ref. [49]. Copyright 2017, Springer Nature. b Schematic illustration of the formation of (Co/Fe)O(OH) from LaCo0.8Fe0.2O3−δ. Reproduced with permission from Ref. [52]. Copyright 2018, Royal Society of Chemistry. c Schematic diagram of the surface reconstruction of perovskite LaCo0.8Fe0.2O3−δ induced by doping with Sr. Reproduced with permission from Ref. [53]. Copyright 2020, Elsevier. d High resolution transmission electron microscopy (HRTEM) images of perovskite LaCo0.8Fe0.2O3−δ before (left) and after (right) the OER process [(1) and (2) show LCFs without Sr doping; (3) and (4) show LSCFs with Sr doping]. Reproduced with permission from Ref. [53]. Copyright 2020, Elsevier

Fig. 17

Reproduced with permission from Ref. [80]. Copyright 2020, Cell Press

Fig. 18

Reproduced with permission from Ref. [55]. Copyright 2019, Wiley–VCH. b Schematic illustration of the formation of E-CoOx/CF from Co-WO3/CF. Reproduced with permission from Ref. [56]. Copyright 2019, Elsevier. c Thermal stability (left) and corrosion resistance (right) tests for DR-OOH. Reproduced with permission from Ref. [57]. Copyright 2019, American Chemistry Society. d Schematic illustration of CoOOH exposure by in situ self-reconstruction in the OER process. Reproduced with permission from Ref. [58]. Copyright 2020, Wiley–VCH

Fig. 19

Reproduced with permission from Ref. [59]. Copyright 2019, American Chemistry Society. b SEM (left) and HAAD-STEM (right) images of NiFe-OH-F-SR. Reproduced with permission from Ref. [59]. Copyright 2019, American Chemistry Society. c Comparison of the formation energy for α-Ni(OH)2 and γ-NiOOH with different VNi concentrations. Reproduced with permission from Ref. [60]. Copyright 2018, American Chemistry Society. d Schematic representation of the reconstruction process of NiCoHxOy to NiOOH-h-CoO2. Reproduced with permission from Ref. [61]. Copyright 2018, American Chemistry Society. e Raman spectra of CoHxOy (left) and Ni-doped CoHxOy (right). Reproduced with permission from Ref. [61]. Copyright 2018, American Chemistry Society

Fig. 20

Reproduced with permission from Ref. [63]. Copyright 2018, American Chemistry Society. b Schematic of the formation process for the Ru-RuPx-CoxP polyhedron. Reproduced with permission from Ref. [64]. Copyright 2018, Elsevier. c ABF-STEM image of CoMoP2 after surface reconstruction. Reproduced with permission from Ref. [65]. Copyright 2020, Royal Society of Chemistry. d Schematic diagram of the conversion of Ni–Fe-P/PO3 into Fe-γ-NiOOH. Reproduced with permission from Ref. [66]. Copyright 2019, Royal Society of Chemistry. e Timing potential curves for Ni1−xFex-P/PO3 with different Fe doping rates. Reproduced with permission from Ref. [66]. Copyright 2019, Royal Society of Chemistry. f HRTEM images of NiPS3 nanosheets after the OER test. Reproduced with permission from Ref. [67]. Copyright 2019, Elsevier. g Raman spectra of NiPS3 nanosheets before and after the OER test. Reproduced with permission from Ref. [67]. Copyright 2019, Elsevier

Fig. 21

Reproduced with permission from Ref. [42]. Copyright 2018, American Chemistry Society. b Timing potential curve for CoSx during the OER process. Reproduced with permission from Ref. [42]. Copyright 2018, American Chemistry Society. c XPS spectra of the pristine and post-OER Ni3S2 catalysts. Reproduced with permission from Ref. [69]. Copyright 2020, Royal Society of Chemistry. d Schematic diagram of the energy change associated with the Co–Cl bond cleavage in the Co2(OH)3Cl catalyst. Reproduced with permission from Ref. [70]. Copyright 2019, Wiley–VCH. e Schematic diagram of the reconstruction of the NiSe2 catalyst. Reproduced with permission from Ref. [71]. Copyright 2019, Elsevier. f Schematic representation of O-CoSe2-O-UNs reconstructed from cobalt diselenide via an Ar/O2 plasma. Reproduced with permission from Ref. [73]. Copyright 2018, Wiley–VCH

Fig. 22

Reproduced with permission from Ref. [74]. Copyright 2019, Springer Nature. b Schematic diagram of the reconstruction of Co3C. Reproduced with permission from Ref. [76]. Copyright 2018, American Chemistry Society. c Trend in OER overpotential as a function of the number of electrochemical sweeps, where red is based on the geometric electrode surface area and blue is based on the electrochemically active surface area. Reproduced with permission from Ref. [76]. Copyright 2018, American Chemistry Society. d ECSA curve as a function of the number of sweeps. Reproduced with permission from Ref. [76]. Copyright 2018, American Chemistry Society

Similar content being viewed by others

References

  1. Liu, J.G., Mooney, H., Hull, V., et al.: Sustainability. Systems integration for global sustainability. Science 347, 1258832 (2015). https://doi.org/10.1126/science.1258832

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Z., Li, C., Domen, K.: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019). https://doi.org/10.1039/c8cs00542g

    Article  CAS  PubMed  Google Scholar 

  3. Joy, J., Mathew, J., George, S.C.: Nanomaterials for photoelectrochemical water splitting: review. Int. J. Hydrog. Energy 43, 4804–4817 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.099

    Article  CAS  Google Scholar 

  4. Wang, Q., Domen, K.: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201

    Article  CAS  PubMed  Google Scholar 

  5. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e

    Article  CAS  PubMed  Google Scholar 

  6. You, B., Tang, M.T., Tsai, C., et al.: Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, 1807001 (2019). https://doi.org/10.1002/adma.201807001

    Article  CAS  Google Scholar 

  7. Li, Y.Y., Du, X.C., Huang, J.W., et al.: Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. Small 15, 1901980 (2019). https://doi.org/10.1002/smll.201901980

    Article  CAS  Google Scholar 

  8. Zhu, Y.M., Zhang, L., Zhao, B.T., et al.: Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv. Funct. Mater. 29, 1901783 (2019). https://doi.org/10.1002/adfm.201901783

    Article  CAS  Google Scholar 

  9. Li, W., Li, F., Yang, H., et al.: A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun 10, 5074 (2019). https://doi.org/10.1038/s41467-019-13052-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, K.J., Zhang, Y.N., Liu, L., et al.: In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries. Nat. Commun. 10, 5286 (2019). https://doi.org/10.1038/s41467-019-13147-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. You, B., Sun, Y.J.: Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002

    Article  CAS  PubMed  Google Scholar 

  12. Fabbri, E., Schmidt, T.J.: Oxygen evolution reaction—the enigma in water electrolysis. ACS Catal. 8, 9765–9774 (2018). https://doi.org/10.1021/acscatal.8b02712

    Article  CAS  Google Scholar 

  13. Suen, N.T., Hung, S.F., Quan, Q., et al.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a

    Article  CAS  PubMed  Google Scholar 

  14. Bajdich, M., García-Mota, M., Vojvodic, A., et al.: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s

    Article  CAS  PubMed  Google Scholar 

  15. Song, F., Bai, L.C., Moysiadou, A., et al.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546

    Article  CAS  PubMed  Google Scholar 

  16. Rossmeisl, J., Qu, Z.W., Zhu, H., et al.: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008

    Article  CAS  Google Scholar 

  17. Wang, Y.W., Qiu, W.J., Song, E.H., et al.: Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 5, 327–341 (2018). https://doi.org/10.1093/nsr/nwx119

    Article  CAS  Google Scholar 

  18. Li, P.P., Zhao, R.B., Chen, H.Y., et al.: Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 15, 1805103 (2019). https://doi.org/10.1002/smll.201805103

    Article  CAS  Google Scholar 

  19. Cheng, Y., Xu, C.W., Jia, L.C., et al.: Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B-Environ. 163, 96–104 (2015). https://doi.org/10.1016/j.apcatb.2014.07.049

    Article  CAS  Google Scholar 

  20. Chen, S., Duan, J.J., Jaroniec, M., et al.: Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925–2930 (2014). https://doi.org/10.1002/adma.201305608

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, J.J., Liu, Y.M., Quan, X., et al.: Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping. Electrochim. Acta 204, 169–175 (2016). https://doi.org/10.1016/j.electacta.2016.04.034

    Article  CAS  Google Scholar 

  22. Zhao, Y., Nakamura, R., Kamiya, K., et al.: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013). https://doi.org/10.1038/ncomms3390

    Article  PubMed  Google Scholar 

  23. Man, I.C., Su, H.Y., Calle-Vallejo, F., et al.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397

    Article  CAS  Google Scholar 

  24. Cherevko, S., Geiger, S., Kasian, O., et al.: Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016). https://doi.org/10.1016/j.cattod.2015.08.014

    Article  CAS  Google Scholar 

  25. Audichon, T., Napporn, T.W., Canaff, C., et al.: IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. J. Phys. Chem. C 120, 2562–2573 (2016). https://doi.org/10.1021/acs.jpcc.5b11868

    Article  CAS  Google Scholar 

  26. Owe, L.E., Tsypkin, M., Wallwork, K.S., et al.: Iridium-ruthenium single phase mixed oxides for oxygen evolution: composition dependence of electrocatalytic activity. Electrochim. Acta 70, 158–164 (2012). https://doi.org/10.1016/j.electacta.2012.03.041

    Article  CAS  Google Scholar 

  27. Ye, S., Ding, C.M., Liu, M.Y., et al.: Water oxidation catalysts for artificial photosynthesis. Adv. Mater. 31, 1902069 (2019). https://doi.org/10.1002/adma.201902069

    Article  CAS  Google Scholar 

  28. Browne, M.P., Nolan, H., Duesberg, G.S., et al.: Low-overpotential high-activity mixed manganese and ruthenium oxide electrocatalysts for oxygen evolution reaction in alkaline media. ACS Catal. 6, 2408–2415 (2016). https://doi.org/10.1021/acscatal.5b02069

    Article  CAS  Google Scholar 

  29. Seitz, L.C., Dickens, C.F., Nishio, K., et al.: A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y.P., Rui, K., Zhu, J.X., et al.: Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem. A Eur. J. 25, 703–713 (2019). https://doi.org/10.1002/chem.201802068

    Article  CAS  Google Scholar 

  31. Yu, J., Li, Q.Q., Li, Y., et al.: Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727

    Article  CAS  Google Scholar 

  32. Zhang, Y.X., Ding, F., Deng, C., et al.: Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catal. Commun. 67, 78–82 (2015). https://doi.org/10.1016/j.catcom.2015.04.012

    Article  CAS  Google Scholar 

  33. Xue, Z., Liu, K., Liu, Q., et al.: Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10(1), 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, R., Xie, J., Liu, Q., et al.: A trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables dual-model rechargeable Zn-CO2/Zn-O2 batteries. J. Mater. Chem. A 7, 2575–2580 (2019). https://doi.org/10.1039/c8ta10958c

    Article  CAS  Google Scholar 

  35. Diao, J.X., Qiu, Y., Liu, S.Q., et al.: Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 32, 1905679 (2020). https://doi.org/10.1002/adma.201905679

    Article  CAS  Google Scholar 

  36. Li, M.X., Wang, H.Y., Zhu, W.D., et al.: RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv. Sci. 7, 1901833 (2020). https://doi.org/10.1002/advs.201901833

    Article  CAS  Google Scholar 

  37. Qu, M.J., Jiang, Y.M., Yang, M., et al.: Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl. Catal. B-Environ. 263, 118324 (2020). https://doi.org/10.1016/j.apcatb.2019.118324

    Article  CAS  Google Scholar 

  38. Li, J., Zhu, Y.Y., Chen, W., et al.: Breathing-mimicking electrocatalysis for oxygen evolution and reduction. Joule 3, 557–569 (2019). https://doi.org/10.1016/j.joule.2018.11.015

    Article  CAS  Google Scholar 

  39. Kim, M., Lee, B., Ju, H., et al.: Reducing the barrier energy of self-reconstruction for anchored cobalt nanoparticles as highly active oxygen evolution electrocatalyst. Adv. Mater. 31, 1901977 (2019). https://doi.org/10.1002/adma.201901977

    Article  CAS  Google Scholar 

  40. Su, X.Z., Wang, Y., Zhou, J., et al.: Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 140, 11286–11292 (2018). https://doi.org/10.1021/jacs.8b05294

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y., Guo, H.R., Yuan, P.F., et al.: Structural evolution of CoMoO4 to CoOOH by ion electrochemical etching for boosting oxygen evolution reaction. J. Power Sources 442, 227252 (2019). https://doi.org/10.1016/j.jpowsour.2019.227252

    Article  CAS  Google Scholar 

  42. Fan, K., Zou, H.Y., Lu, Y., et al.: Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12, 12369–12379 (2018). https://doi.org/10.1021/acsnano.8b06312

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Z.S., Gan, Q., Li, X.L., et al.: Elucidating surface restructuring-induced catalytic reactivity of cobalt phosphide nanoparticles under electrochemical conditions. J. Phys. Chem. C 122, 2848–2853 (2018). https://doi.org/10.1021/acs.jpcc.7b11843

    Article  CAS  Google Scholar 

  44. Masa, J., Sinev, I., Mistry, H., et al.: Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 7, 1700381 (2017). https://doi.org/10.1002/aenm.201700381

    Article  CAS  Google Scholar 

  45. Görlin, M., Ferreira de Araújo, J., Schmies, H., et al.: Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017). https://doi.org/10.1021/jacs.6b12250

    Article  CAS  PubMed  Google Scholar 

  46. Wu, T.Z., Sun, S.N., Song, J.J., et al.: Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4

    Article  CAS  Google Scholar 

  47. Zhang, S., Gu, S.Q., Wang, Y., et al.: Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 9, 7389–7397 (2019). https://doi.org/10.1021/acscatal.9b00928

    Article  CAS  Google Scholar 

  48. Duan, Y., Sun, S.N., Sun, Y.M., et al.: Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv. Mater. 31, 1807898 (2019). https://doi.org/10.1002/adma.201807898

    Article  CAS  Google Scholar 

  49. Fabbri, E., Nachtegaal, M., Binninger, T., et al.: Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017). https://doi.org/10.1038/nmat4938

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, C.H., Li, N., Zhang, R.Z., et al.: Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3−δ for superimposed OER performance. ACS Appl. Mater. Interfaces 11, 47858–47867 (2019). https://doi.org/10.1021/acsami.9b13834

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, X., Kim, B.J., Fabbri, E., et al.: Co/Fe oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems. ACS Appl. Mater. Interfaces 11, 34787–34795 (2019). https://doi.org/10.1021/acsami.9b04456

    Article  CAS  PubMed  Google Scholar 

  52. Song, S.Z., Zhou, J., Su, X.Z., et al.: Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 11, 2945–2953 (2018). https://doi.org/10.1039/c8ee00773j

    Article  CAS  Google Scholar 

  53. Song, S.Z., Zhou, J., Sun, J., et al.: Understanding the origin of high oxygen evolution reaction activity in the high Sr-doped perovskite. Chin. J. Catal. 41, 592–597 (2020). https://doi.org/10.1016/S1872-2067(19)63441-8

    Article  CAS  Google Scholar 

  54. Chen, G., Hu, Z.W., Zhu, Y.P., et al.: A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv. Mater. 30, 1804333 (2018). https://doi.org/10.1002/adma.201804333

    Article  CAS  Google Scholar 

  55. Duan, Y., Yu, Z.Y., Hu, S.J., et al.: Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem.-Int. Edit. 58, 15772–15777 (2019). https://doi.org/10.1002/anie.201909939

    Article  CAS  Google Scholar 

  56. Huang, H.W., Yu, C., Huang, H.L., et al.: Activation of transition metal oxides by in situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy 58, 778–785 (2019). https://doi.org/10.1016/j.nanoen.2019.01.094

    Article  CAS  Google Scholar 

  57. Liu, X., Ni, K., Wen, B., et al.: Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 4, 2585–2592 (2019). https://doi.org/10.1021/acsenergylett.9b01922

    Article  CAS  Google Scholar 

  58. Li, R.C., Hu, B.H., Yu, T.W., et al.: Insights into correlation among surface-structure-activity of cobalt-derived pre-catalyst for oxygen evolution reaction. Adv. Sci. 7, 1902830 (2020). https://doi.org/10.1002/advs.201902830

    Article  CAS  Google Scholar 

  59. Zhang, B.W., Jiang, K., Wang, H.T., et al.: Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19, 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466

    Article  CAS  PubMed  Google Scholar 

  60. He, Q., Wan, Y.Y., Jiang, H.L., et al.: Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Lett. 3, 1373–1380 (2018). https://doi.org/10.1021/acsenergylett.8b00515

    Article  CAS  Google Scholar 

  61. Chen, Z., Cai, L., Yang, X.F., et al.: Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal. 8, 1238–1247 (2018). https://doi.org/10.1021/acscatal.7b03191

    Article  CAS  Google Scholar 

  62. Miao, M., Hou, R.Z., Qi, R.J., et al.: Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. J. Mater. Chem. A 7, 18925–18931 (2019). https://doi.org/10.1039/c9ta06704c

    Article  CAS  Google Scholar 

  63. He, Q., Xie, H., Rehman, Z.U., et al.: Highly defective Fe-based oxyhydroxides from electrochemical reconstruction for efficient oxygen evolution catalysis. ACS Energy Lett. 3, 861–868 (2018). https://doi.org/10.1021/acsenergylett.8b00342

    Article  CAS  Google Scholar 

  64. Wang, L., Zhou, Q., Pu, Z.H., et al.: Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. Nano Energy 53, 270–276 (2018). https://doi.org/10.1016/j.nanoen.2018.08.061

    Article  CAS  Google Scholar 

  65. Xu, S.S., Gao, X., Deshmukh, A., et al.: Pressure-promoted irregular CoMoP2 nanoparticles activated by surface reconstruction for oxygen evolution reaction electrocatalysts. J. Mater. Chem. A 8, 2001–2007 (2020). https://doi.org/10.1039/c9ta11775j

    Article  CAS  Google Scholar 

  66. Huang, C., Zou, Y., Ye, Y.Q., et al.: Unveiling the active sites of Ni-Fe phosphide/metaphosphate for efficient oxygen evolution under alkaline conditions. Chem. Commun. 55, 7687–7690 (2019). https://doi.org/10.1039/c9cc03024g

    Article  CAS  Google Scholar 

  67. Liu, P., Ali, R.N., Li, J., et al.: Self-reconstruction in 2D nickel thiophosphate nanosheets to boost oxygen evolution reaction. Appl. Surf. Sci. 484, 54–61 (2019). https://doi.org/10.1016/j.apsusc.2019.04.029

    Article  CAS  Google Scholar 

  68. Lv, C., Xu, S.C., Yang, Q.P., et al.: Promoting electrocatalytic activity of cobalt cyclotetraphosphate in full water splitting by titanium-oxide-accelerated surface reconstruction. J. Mater. Chem. A 7, 12457–12467 (2019). https://doi.org/10.1039/c9ta02442e

    Article  CAS  Google Scholar 

  69. Liu, Y.J., Luan, C.L., Yang, J.T., et al.: In situ fabrication of dynamic self-optimizing Ni3S2 nanosheets as an efficient catalyst for the oxygen evolution reaction. Dalton Trans. 49, 70–78 (2020). https://doi.org/10.1039/c9dt03885j

    Article  CAS  PubMed  Google Scholar 

  70. Jiang, H.L., He, Q., Li, X.Y., et al.: Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31, 1805127 (2019). https://doi.org/10.1002/adma.201805127

    Article  CAS  Google Scholar 

  71. Zhai, L.L., Mak, C.H., Qian, J.S., et al.: Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochim. Acta 305, 37–46 (2019). https://doi.org/10.1016/j.electacta.2019.03.031

    Article  CAS  Google Scholar 

  72. Zhao, X., Xing, Y.L., Zhao, L.Y., et al.: Phosphorus-modulated cobalt selenides enable engineered reconstruction of active layers for efficient oxygen evolution. J. Catal. 368, 155–162 (2018). https://doi.org/10.1016/j.jcat.2018.10.010

    Article  CAS  Google Scholar 

  73. Wang, X., Zhuang, L.Z., Jia, Y., et al.: Plasma-triggered synergy of exfoliation, phase transformation, and surface engineering in cobalt diselenide for enhanced water oxidation. Angew. Chem.-Int. Edit. 57, 16421–16425 (2018). https://doi.org/10.1002/anie.201810199

    Article  CAS  Google Scholar 

  74. Yu, Z.Y., Duan, Y., Liu, J.D., et al.: Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nat. Commun. 10, 2799 (2019). https://doi.org/10.1038/s41467-019-10698-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kou, Z.K., Yu, Y., Liu, X.M., et al.: Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 10, 4411–4419 (2020). https://doi.org/10.1021/acscatal.0c00340

    Article  CAS  Google Scholar 

  76. Kim, J.H., Kawashima, K., Wygant, B.R., et al.: Transformation of a cobalt carbide (Co3C) oxygen evolution precatalyst. ACS Appl. Energy Mater. 1, 5145–5150 (2018). https://doi.org/10.1021/acsaem.8b01336

    Article  CAS  Google Scholar 

  77. Ren, X., Wei, C., Sun, Y.M., et al.: Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 32, 2001292 (2020). https://doi.org/10.1002/adma.202001292

    Article  CAS  Google Scholar 

  78. Chen, Y.B., Li, H.Y., Wang, J.X., et al.: Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-08532-3

    Article  CAS  Google Scholar 

  79. Zeng, K., Yu, H.Y., Sun, Z.H., et al.: Enhanced electrocatalytic activity of murdochite-type Ni6MnO8 for water oxidation via surface reconstruction. ACS Appl. Mater. Interfaces 12, 39205–39214 (2020). https://doi.org/10.1021/acsami.0c10678

    Article  CAS  PubMed  Google Scholar 

  80. Liu, X., Meng, J.S., Ni, K., et al.: Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 1, 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241

    Article  Google Scholar 

  81. Grumelli, D., Wiegmann, T., Barja, S., et al.: Electrochemical stability of the reconstructed Fe3O4 (001) surface. Angew. Chem.- Int. Edit. 59, 21904–21908 (2020). https://doi.org/10.1002/anie.202008785

    Article  CAS  Google Scholar 

  82. Zhang, N., Feng, X.B., Rao, D.W., et al.: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-17934-7

    Article  CAS  Google Scholar 

  83. Gao, X.R., Liu, X.M., Zang, W.J., et al.: Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 78, 105355 (2020). https://doi.org/10.1016/j.nanoen.2020.105355

    Article  CAS  Google Scholar 

  84. Liu, D., Ai, H.Q., Li, J.L., et al.: Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 10, 2002464 (2020). https://doi.org/10.1002/aenm.202002464

    Article  CAS  Google Scholar 

  85. Jiang, H.L., He, Q., Zhang, Y.K., et al.: Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 51, 2968–2977 (2018). https://doi.org/10.1021/acs.accounts.8b00449

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y., Fan, X.L., Jian, J.H., et al.: A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy Environ. Sci. 10, 2312–2317 (2017). https://doi.org/10.1039/c7ee01702b

    Article  CAS  Google Scholar 

  87. Hu, Q., Li, G.M., Liu, X.F., et al.: Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew. Chem.-Int. Edit. 58, 4318–4322 (2019). https://doi.org/10.1002/anie.201900109

    Article  CAS  Google Scholar 

  88. Li, Z.S., Li, B.L., Yang, C.X., et al.: Controllable preparation of nitrogen-doped graphitized carbon from molecular precursor as non-metal oxygen evolution reaction electrocatalyst. Appl. Surf. Sci. 491, 723–734 (2019). https://doi.org/10.1016/j.apsusc.2019.06.183

    Article  CAS  Google Scholar 

  89. Xing, C.Y., Xue, Y.R., Huang, B.L., et al.: Fluorographdiyne: a metal-free catalyst for applications in water reduction and oxidation. Angew. Chem.-Int. Edit. 131, 14035–14041 (2019). https://doi.org/10.1002/ange.201905729

    Article  Google Scholar 

  90. Balogun, M.S., Qiu, W.T., Yang, H., et al.: A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ. Sci. 9, 3411–3416 (2016). https://doi.org/10.1039/c6ee01930g

    Article  CAS  Google Scholar 

  91. Lin, Y.X., Feng, W.J., Zhang, J.J., et al.: A polyimide nanolayer as a metal-free and durable organic electrode toward highly efficient oxygen evolution. Angew. Chem.-Int. Edit. 57, 12563–12566 (2018). https://doi.org/10.1002/anie.201808036

    Article  CAS  Google Scholar 

  92. Hu, C.G., Dai, L.M.: Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29, 1604942 (2017). https://doi.org/10.1002/adma.201604942

    Article  CAS  Google Scholar 

  93. Zhang, L.P., Lin, C.Y., Zhang, D.T., et al.: Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 31, 1805252 (2019). https://doi.org/10.1002/adma.201805252

    Article  CAS  Google Scholar 

  94. Yuan, Y.F., Li, M., Bai, Z.Y., et al.: The absence and importance of operando techniques for metal-free catalysts. Adv. Mater. 31, 1805609 (2019). https://doi.org/10.1002/adma.201805609

    Article  CAS  Google Scholar 

  95. Topsøe, H.: Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003). https://doi.org/10.1016/S0021-9517(02)00133-1

    Article  CAS  Google Scholar 

  96. Zhu, K.Y., Zhu, X.F., Yang, W.S.: Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem.-Int. Edit. 58, 1252–1265 (2019). https://doi.org/10.1002/anie.201802923

    Article  CAS  Google Scholar 

  97. Liu, D.Q., Shadike, Z., Lin, R.Q., et al.: Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31, 1806620 (2019). https://doi.org/10.1002/adma.201806620

    Article  CAS  Google Scholar 

  98. Li, X.N., Yang, X.F., Zhang, J.M., et al.: In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937

    Article  CAS  Google Scholar 

  99. Zhao, T.W., Wang, Y., Karuturi, S., et al.: Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2, 582–613 (2020). https://doi.org/10.1002/cey2.79

    Article  CAS  Google Scholar 

  100. Guo, J.H., Crumlin, E.: In situ and in-operando experiments. Synchrotron Radiat. News 30, 2 (2017). https://doi.org/10.1080/08940886.2017.1289796

    Article  Google Scholar 

  101. Tan, J., Liu, D., Xu, X., et al.: In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review. Nanoscale 9, 19001–19016 (2017). https://doi.org/10.1039/c7nr06819k

    Article  CAS  PubMed  Google Scholar 

  102. Toparli, C., Sarfraz, A., Wieck, A.D., et al.: In situ and operando observation of surface oxides during oxygen evolution reaction on copper. Electrochim. Acta 236, 104–115 (2017). https://doi.org/10.1016/j.electacta.2017.03.137

    Article  CAS  Google Scholar 

  103. Bon, V., Brunner, E., Pöppl, A., et al.: Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater. 30, 1907847 (2020). https://doi.org/10.1002/adfm.201907847

    Article  CAS  Google Scholar 

  104. Weckhuysen, B.M.: Preface: recent advances in the in situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 39, 4557 (2010). https://doi.org/10.1039/c0cs90031a

    Article  CAS  Google Scholar 

  105. Xu, C.T., Zou, R.J., Peng, Y.X., et al.: In situ transmission electron microscope studies on one-dimensional nanomaterials: Manipulation, properties and applications. Prog. Mater. Sci. 113, 100674 (2020). https://doi.org/10.1016/j.pmatsci.2020.100674

    Article  CAS  Google Scholar 

  106. Mohammadi, M., Jerschow, A.: In situ and operando magnetic resonance imaging of electrochemical cells: a perspective. J. Magn. Reson. 308, 106600 (2019). https://doi.org/10.1016/j.jmr.2019.106600

    Article  CAS  PubMed  Google Scholar 

  107. Meyer, Q., Zeng, Y.C., Zhao, C.: In situ and operando characterization of proton exchange membrane fuel cells. Adv. Mater. 31, 1901900 (2019). https://doi.org/10.1002/adma.201901900

    Article  CAS  Google Scholar 

  108. Schlögl, R.: Heterogeneous catalysis. Angew. Chem.-Int. Edit. 54, 3465–3520 (2015). https://doi.org/10.1002/anie.201410738

    Article  CAS  Google Scholar 

  109. Fabbri, E., Abbott, D.F., Nachtegaal, M., et al.: Operando X-ray absorption spectroscopy: a powerful tool toward water splitting catalyst development. Curr. Opin. Electrochem. 5, 20–26 (2017). https://doi.org/10.1016/j.coelec.2017.08.009

    Article  CAS  Google Scholar 

  110. Li, J., Güttinger, R., Moré, R., et al.: Frontiers of water oxidation: the quest for true catalysts. Chem. Soc. Rev. 46, 6124–6147 (2017). https://doi.org/10.1039/c7cs00306d

    Article  CAS  PubMed  Google Scholar 

  111. van Oversteeg, C.H.M., Doan, H.Q., de Groot, F.M.F., et al.: In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 46, 102–125 (2017). https://doi.org/10.1039/c6cs00230g

    Article  CAS  PubMed  Google Scholar 

  112. Dong, C.L., Vayssieres, L.: In situ/operando X-ray spectroscopies for advanced investigation of energy materials. Chem. A Eur. J. 24, 18356–18373 (2018). https://doi.org/10.1002/chem.201803936

    Article  CAS  Google Scholar 

  113. Tahir, M., Pan, L., Idrees, F., et al.: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022

    Article  CAS  Google Scholar 

  114. Wang, M.Y., Árnadóttir, L., Xu, Z.J., et al.: In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11, 1–18 (2019). https://doi.org/10.1007/s40820-019-0277-x

    Article  CAS  Google Scholar 

  115. Zheng, X.L., Zhang, B., de Luna, P., et al.: Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018). https://doi.org/10.1038/nchem.2886

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Y.H., Liang, M.M., Zhang, Y.J., et al.: Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy. Angew. Chem.-Int. Edit. 57, 11257–11261 (2018). https://doi.org/10.1002/anie.201805464

    Article  CAS  Google Scholar 

  117. Deng, Y.L., Yeo, B.S.: Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7, 7873–7889 (2017). https://doi.org/10.1021/acscatal.7b02561

    Article  CAS  Google Scholar 

  118. Miro, S., Bordas, E., Thomé, L., et al.: Monitoring of the microstructure of ion-irradiated nuclear ceramics by in situ Raman spectroscopy. J. Raman Spectrosc. 47, 476–485 (2016). https://doi.org/10.1002/jrs.4837

    Article  CAS  Google Scholar 

  119. Eliseeva, G., Burmistrov, I., Agarkov, D., et al.: In-situ studies of processes at fuel electrode of solid oxide fuel cells (SOFC) by Raman spectroscopy. Chem. Prob. 3, 18 (2019)

    Google Scholar 

  120. Jantz, D., Leonard, K.C.: Characterizing electrocatalysts with scanning electrochemical microscopy. Ind. Eng. Chem. Res. 57, 7431–7440 (2018). https://doi.org/10.1021/acs.iecr.8b00922

    Article  CAS  Google Scholar 

  121. Rodríguez-López, J., Alpuche-Avilés, M.A., Bard, A.J.: Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media. J. Am. Chem. Soc. 130, 16985–16995 (2008). https://doi.org/10.1021/ja8050553

    Article  CAS  PubMed  Google Scholar 

  122. Arroyo-Currás, N., Bard, A.J.: Iridium oxidation as observed by surface interrogation scanning electrochemical microscopy. J. Phys. Chem. C 119, 8147–8154 (2015). https://doi.org/10.1021/acs.jpcc.5b00106

    Article  CAS  Google Scholar 

  123. Gossage, Z.T., Schorr, N.B., Hernández-Burgos, K., et al.: Interrogating charge storage on redox active colloids via combined Raman spectroscopy and scanning electrochemical microscopy. Langmuir 33, 9455–9463 (2017). https://doi.org/10.1021/acs.langmuir.7b01121

    Article  CAS  PubMed  Google Scholar 

  124. Barforoush, J.M., Seuferling, T.E., Jantz, D.T., et al.: Insights into the active electrocatalytic areas of layered double hydroxide and amorphous nickel-iron oxide oxygen evolution electrocatalysts. ACS Appl. Energy Mater. 1, 1415–1423 (2018). https://doi.org/10.1021/acsaem.8b00190

    Article  CAS  Google Scholar 

  125. Barforoush, J.M., Jantz, D.T., Seuferling, T.E., et al.: Microwave-assisted synthesis of a nanoamorphous (Ni0.8, Fe0.2) oxide oxygen-evolving electrocatalyst containing only “fast” sites. J. Mater. Chem. A 5, 11661–11670 (2017). https://doi.org/10.1039/c7ta00151g

    Article  CAS  Google Scholar 

  126. Steimecke, M., Seiffarth, G., Bron, M.: In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup. Anal. Chem. 89, 10679–10686 (2017). https://doi.org/10.1021/acs.analchem.7b01060

    Article  CAS  PubMed  Google Scholar 

  127. Christensen, P.A., Mashhadani, Z.T.A.W., Md Ali, A.H.B.: In situ FTIR studies on the oxidation of isopropyl alcohol over SnO2 as a function of temperature up to 600 °C and a comparison to the analogous plasma-driven process. Phys. Chem. Chem. Phys. 20, 9053–9062 (2018). https://doi.org/10.1039/c7cp07829c

    Article  CAS  PubMed  Google Scholar 

  128. Kouotou, P.M., Tian, Z.Y.: In situ Fourier transform infrared spectroscopy diagnostic for characterization and performance test of catalysts. Chin. J. Chem. Phys. 30, 513–520 (2017). https://doi.org/10.1063/1674-0068/30/cjcp1705097

    Article  CAS  Google Scholar 

  129. Lefèvre, G.: In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid. Interface Sci. 107, 109–123 (2004). https://doi.org/10.1016/j.cis.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  130. Prinetto, F., Ghiotti, G., Nova, I., et al.: In situ FT-IR and reactivity study of NOx storage over Pt–Ba/Al2O3catalysts. Phys. Chem. Chem. Phys. 5, 4428–4434 (2003). https://doi.org/10.1039/b305815h

    Article  CAS  Google Scholar 

  131. Ye, J.Y., Jiang, Y.X., Sheng, T., et al.: In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy 29, 414–427 (2016). https://doi.org/10.1016/j.nanoen.2016.06.023

    Article  CAS  Google Scholar 

  132. Li, X.N., Wang, H.Y., Yang, H.B., et al.: In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2, 1700395 (2018). https://doi.org/10.1002/smtd.201700395

    Article  CAS  Google Scholar 

  133. Crumlin, E.J., Liu, Z., Bluhm, H., et al.: X-ray spectroscopy of energy materials under in situ/operando conditions. J. Electron. Spectrosc. Relat. Phenom. 200, 264–273 (2015). https://doi.org/10.1016/j.elspec.2015.06.008

    Article  CAS  Google Scholar 

  134. Zhang, S.R., Shan, J.J., Zhu, Y., et al.: WGS catalysis and in situ studies of CoO1−x, PtCon/Co3O4, and PtmCom’/CoO1-x nanorod catalysts. J. Am. Chem. Soc. 135, 8283–8293 (2013). https://doi.org/10.1021/ja401967y

    Article  CAS  PubMed  Google Scholar 

  135. Stoerzinger, K.A., Hong, W.T., Crumlin, E.J., et al.: Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem. Res. 48, 2976–2983 (2015). https://doi.org/10.1021/acs.accounts.5b00275

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Y.S., Jeong, S., White, J.L., et al.: In-situ/operando X-ray characterization of metal hydrides. ChemPhysChem 20, 1261–1271 (2019). https://doi.org/10.1002/cphc.201801185

    Article  CAS  PubMed  Google Scholar 

  137. Cen, J.J., Wu, Q.Y., Liu, M.Z., et al.: Developing new understanding of photoelectrochemical water splitting via in situ techniques: a review on recent progress. Green Energy Environ. 2, 100–111 (2017). https://doi.org/10.1016/j.gee.2017.03.001

    Article  Google Scholar 

  138. Lu, J.Q., Bravo-Suárez, J.J., Takahashi, A., et al.: In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 232, 85–95 (2005). https://doi.org/10.1016/j.jcat.2005.02.013

    Article  CAS  Google Scholar 

  139. Wijten, J.H.J., Mandemaker, L.D.B., Eeden, T.C., et al.: In situ study on Ni–Mo stability in a water-splitting device: effect of catalyst substrate and electric potential. Chemsuschem 13, 3172–3179 (2020). https://doi.org/10.1002/cssc.202000678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, Y., Chapman, A., Larsen, S.W., et al.: UV-vis imaging of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. Anal. Chem. 90, 6413–6418 (2018). https://doi.org/10.1021/acs.analchem.8b00587

    Article  CAS  PubMed  Google Scholar 

  141. Ishida, R., Hayashi, S., Yamazoe, S., et al.: Hydrogen-mediated electron doping of gold clusters as revealed by in situ X-ray and UV-vis absorption spectroscopy. J. Phys. Chem. Lett. 8, 2368–2372 (2017). https://doi.org/10.1021/acs.jpclett.7b00722

    Article  CAS  PubMed  Google Scholar 

  142. Yamada, K., Hiue, T., Ina, T., et al.: Improvement in cobalt phosphate electrocatalyst activity toward oxygen evolution from water by glycine molecule addition and functional details. Anal. Sci. 36, 35–40 (2020). https://doi.org/10.2116/analsci.19sap08

    Article  CAS  PubMed  Google Scholar 

  143. Wahl, S., El-Refaei, S.M., Amsalem, P., et al.: Operando diffuse reflectance UV-vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts. Catal. Sci. Technol. 10, 517–528 (2020). https://doi.org/10.1039/c9cy02329a

    Article  CAS  Google Scholar 

  144. Karwacki, L., Weckhuysen, B.M.: New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study. Phys. Chem. Chem. Phys. 13, 3681–3685 (2011). https://doi.org/10.1039/c0cp02220a

    Article  CAS  PubMed  Google Scholar 

  145. Pishgar, S., Strain, J.M., Gulati, S., et al.: Investigation of the photocorrosion of n-GaP photoanodes in acid with in situ UV-Vis spectroscopy. J. Mater. Chem. A 7, 25377–25388 (2019). https://doi.org/10.1039/c9ta10106c

    Article  CAS  Google Scholar 

  146. Li, J.T., Chu, D., Dong, H., et al.: Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 142, 50–54 (2020). https://doi.org/10.1021/jacs.9b10882

    Article  CAS  PubMed  Google Scholar 

  147. Liu, Z.J., Wang, G.J., Zhu, X.Y., et al.: Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction. Angew. Chem.-Int. Edit. 132, 4766–4772 (2020). https://doi.org/10.1002/ange.201914245

    Article  Google Scholar 

  148. Zhang, X.Y., Li, J., Yang, Y., et al.: Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv. Mater. 30, 1803551 (2018). https://doi.org/10.1002/adma.201803551

    Article  CAS  Google Scholar 

  149. Wang, X.T., Ouyang, T., Wang, L., et al.: Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem.-Int. Edit. 59, 6492–6499 (2020). https://doi.org/10.1002/anie.202000690

    Article  CAS  Google Scholar 

  150. Bao, J., Zhang, X.D., Fan, B., et al.: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem.-Int. Edit. 54, 7399–7404 (2015). https://doi.org/10.1002/anie.201502226

    Article  CAS  Google Scholar 

  151. Schweke, D., Mordehovitz, Y., Halabi, M., et al.: Defect chemistry of oxides for energy applications. Adv. Mater. 30, 1706300 (2018). https://doi.org/10.1002/adma.201706300

    Article  CAS  Google Scholar 

  152. Su, Y.C., Liu, H.C., Li, C.X., et al.: Hydrothermal-assisted defect engineering in spinel Co3O4 nanostructures as bifunctional catalysts for oxygen electrode. J. Alloy. Compd. 799, 160–168 (2019). https://doi.org/10.1016/j.jallcom.2019.05.331

    Article  CAS  Google Scholar 

  153. Kuznetsov, D.A., Naeem, M.A., Kumar, P.V., et al.: Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 142, 7883–7888 (2020). https://doi.org/10.1021/jacs.0c01135

    Article  CAS  PubMed  Google Scholar 

  154. Yoo, J.S., Rong, X., Liu, Y.S., et al.: Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8, 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612

    Article  CAS  Google Scholar 

  155. Wang, X.Y., Pan, Z.Y., Chu, X.F., et al.: Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem.-Int. Edit. 58, 11720–11725 (2019). https://doi.org/10.1002/anie.201905543

    Article  CAS  Google Scholar 

  156. Grimaud, A., Diaz-Morales, O., Han, B.H., et al.: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695

    Article  CAS  PubMed  Google Scholar 

  157. Kwon, G., Jang, H., Lee, J.S., et al.: Resolution of electronic and structural factors underlying oxygen-evolving performance in amorphous cobalt oxide catalysts. J. Am. Chem. Soc. 140, 10710–10720 (2018). https://doi.org/10.1021/jacs.8b02719

    Article  CAS  PubMed  Google Scholar 

  158. Liardet, L., Hu, X.L.: Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution. ACS Catal. 8, 644–650 (2018). https://doi.org/10.1021/acscatal.7b03198

    Article  CAS  PubMed  Google Scholar 

  159. Etinger-Geller, Y., Polishchuk, I., Seknazi, E., et al.: Surface reconstruction causes structural variations in nanometric amorphous Al2O3. Phys. Chem. Chem. Phys. 21, 14887–14891 (2019). https://doi.org/10.1039/c9cp00942f

    Article  CAS  PubMed  Google Scholar 

  160. Liu, J.Z., Hu, Q., Wang, Y., et al.: Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. PNAS 117, 21906–21913 (2020). https://doi.org/10.1073/pnas.2009180117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu, Z.J.: Transition metal oxides for water oxidation: all about oxyhydroxides? Sci. China Mater. 63, 3–7 (2020). https://doi.org/10.1007/s40843-019-9588-5

    Article  CAS  Google Scholar 

  162. Lyu, Y., Zheng, J., Xiao, Z., et al.: Identifying the intrinsic relationship between the restructured oxide layer and oxygen evolution reaction performance on the cobalt pnictide catalyst. Small 16, e1906867 (2020). https://doi.org/10.1002/smll.201906867

    Article  CAS  PubMed  Google Scholar 

  163. Yuan, L., Liu, S., Xu, S.C., et al.: Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 82, 105732 (2021). https://doi.org/10.1016/j.nanoen.2020.105732

    Article  CAS  Google Scholar 

  164. He, L.Q., Zhang, W.B., Mo, Q.J., et al.: Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem.-Int. Edit. 132, 3572–3576 (2020). https://doi.org/10.1002/ange.201914752

    Article  Google Scholar 

  165. Zhang, X.B., Zhang, G.H., Liu, W., et al.: Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Appl. Catal. B-Environ. 284, 119700 (2021). https://doi.org/10.1016/j.apcatb.2020.119700

    Article  CAS  Google Scholar 

  166. Chung, D.Y., Lopes, P.P., Martins, P.F.B.D., et al.: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020). https://doi.org/10.1038/s41560-020-0576-y

    Article  Google Scholar 

  167. Ma, D., Hu, B., Wu, W., et al.: Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 10, 3367 (2019). https://doi.org/10.1038/s41467-019-11176-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21975292, 21978331, 21905311, 92061124), the Guangzhou Science and Technology Project (201707010079), the Guangdong Province Nature Science Foundation (2020A1515010343), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2016TQ03N322), and the Fundamental Research Funds for Central Universities (No19lgpy136, 19lgpy116) for financial support. Prof. Tongwen Yu would like to give special thanks to the support of the startup grant provided by the “Hundred Talents Program” at Sun Yat-sen University (No. 76110-18841219).

Author information

Authors and Affiliations

Authors

Contributions

No additional statements need to be declared.

Corresponding author

Correspondence to Zongping Shao.

Ethics declarations

Conflict of Interest

There are no conflicts or competing interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, H., Yu, T. et al. Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. Electrochem. Energ. Rev. 4, 566–600 (2021). https://doi.org/10.1007/s41918-021-00104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00104-8

Keywords

Navigation