Skip to main content
Log in

Recent Advances in Micro/Nano-cutting: Effect of Tool Edge and Material Properties

  • Review Papers
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Micro- and nano-machining technology has been applied in industry to generate high-precision parts with micro/nano-metric accuracy or feature size in the recent decades. Cutting is one of the most powerful manufacturing processes, and the material removal mechanism is urgently demanded by the industry to understand and improve the micro/nano-machining process efficiently at a low cost. This paper presents the recent advances in cutting mechanism and its applicability for predicting the surface generation and chip formation, especially when material is removed in micro- and nanoscale. In addition to the industry-concerned performance parameters, fundamental physical parameters such as stresses, strains, temperatures, phase transformation, minimum uncut chip thickness and size effects are discussed in this paper for the in-depth understanding of the micro/nano-cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49(2):473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  2. Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46(5):467–481. https://doi.org/10.1016/j.ijmachtools.2005.07.019

    Article  Google Scholar 

  3. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846. https://doi.org/10.1016/j.cirp.2013.05.003

    Article  Google Scholar 

  4. Li GH, Xu ZW, Fang FZ, Wu W, Xing XD, Li WL, Liu HZ (2013) Micro cutting of V-shaped cylindrical grating template for roller nano-imprint. J Mater Process Technol 213(6):895–904. https://doi.org/10.1016/j.jmatprotec.2012.12.010

    Article  Google Scholar 

  5. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45(15):1681–1686. https://doi.org/10.1016/j.ijmachtools.2005.03.010

    Article  Google Scholar 

  6. Rahman MA, Amrun MR, Rahman M, Kumar AS (2017) Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties. Int J Mach Tools Manuf 115(Supplement C):15–28. https://doi.org/10.1016/j.ijmachtools.2016.11.003

    Article  Google Scholar 

  7. Fang FZ, Liu B, Xu ZW (2015) Nanometric cutting in a scanning electron microscope. Precis Eng 41:145–152. https://doi.org/10.1016/j.precisioneng.2015.01.009

    Article  Google Scholar 

  8. Yan YD, Sun T, Dong S (2007) Study on effects of tip geometry on AFM nanoscratching tests. Wear 262(3):477–483. https://doi.org/10.1016/j.wear.2006.06.017

    Article  Google Scholar 

  9. Qingliang Z, Tao S, Shen D, Yingchun L (2001) Micro/nano-machining on silicon surface with a modified atomic force microscope. Chin J Mech Eng 14(3):207–211

    Article  Google Scholar 

  10. Mallock A (1881) The action of cutting tools. Proc R Soc Lond 33(216–219):127–139

    Article  Google Scholar 

  11. Shaw M (2005) Metal cutting principles—Oxford series on advanced manufacturing. Publ Oxford University Press, New York

    Google Scholar 

  12. Ernst H, Merchant M (1941) Surface treatment of metals. American Society of Metals, New York

    Google Scholar 

  13. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275

    Article  Google Scholar 

  14. Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16(6):318–324

    Article  Google Scholar 

  15. Lee E, Shaffer B (1951) The theory of plasticity applied to a problem of machining. J Appl Mech 18(4):405–413

    Google Scholar 

  16. Oxley PLB, Hastings WF (1977) Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc R Soc Lond Math Phys Sci 356(1686):395–410. https://doi.org/10.1098/rspa.1977.0141

    Article  Google Scholar 

  17. Fang N, Jawahir IS, Oxley PLB (2001) A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool. Int J Mech Sci 43(2):557–580. https://doi.org/10.1016/S0020-7403(99)00117-4

    Article  MATH  Google Scholar 

  18. Fang N, Jawahir IS (2002) An analytical predictive model and experimental validation for machining with grooved tools incorporating the effects of strains, strain-rates, and temperatures. CIRP Ann Manuf Technol 51(1):83–86. https://doi.org/10.1016/S0007-8506(07)61471-1

    Article  Google Scholar 

  19. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—Part I: new model and theory. J Mech Phys Solids 51(4):715–742. https://doi.org/10.1016/S0022-5096(02)00060-1

    Article  MATH  Google Scholar 

  20. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part II: analysis of the size effect and the shear strain-rate. J Mech Phys Solids 51(4):743–762. https://doi.org/10.1016/S0022-5096(02)00061-3

    Article  MATH  Google Scholar 

  21. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  22. Abouridouane M, Klocke F, Lung D, Adams O (2012) A new 3D multiphase FE model for micro cutting ferritic–pearlitic carbon steels. CIRP Ann Manuf Technol 61(1):71–74. https://doi.org/10.1016/j.cirp.2012.03.075

    Article  Google Scholar 

  23. Abouridouane M, Klocke F, Lung D (2014) Microstructure-based 3D FE modeling for micro cutting ferritic-pearlitic carbon steels. In: ASME 2014 international manufacturing science and engineering conference collocated with the JSME 2014 international conference on materials and processing and the 42nd North American manufacturing research conference, 2014. American Society of Mechanical Engineers, pp V001T001A008–V001T001A008

  24. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  25. Jung J-H, Na Y-S, Cho K-M, Dimiduk DM, Choi YS (2015) Microcompression behaviors of single crystals simulated by crystal plasticity finite element method. Metall Mater Trans A 46(11):4834–4840. https://doi.org/10.1007/s11661-015-3092-0

    Article  Google Scholar 

  26. Liu Q, Roy A, Tamura S, Matsumura T, Silberschmidt VV (2016) Micro-cutting of single-crystal metal: finite-element analysis of deformation and material removal. Int J Mech Sci 118:135–143. https://doi.org/10.1016/j.ijmecsci.2016.09.021

    Article  Google Scholar 

  27. Tajalli SA, Movahhedy MR, Akbari J (2014) Simulation of orthogonal micro-cutting of FCC materials based on rate-dependent crystal plasticity finite element model. Comput Mater Sci 86:79–87. https://doi.org/10.1016/j.commatsci.2014.01.016

    Article  Google Scholar 

  28. Niesłony P, Grzesik W, Chudy R, Habrat W (2015) Meshing strategies in FEM simulation of the machining process. Arch Civ Mech Eng 15(1):62–70. https://doi.org/10.1016/j.acme.2014.03.009

    Article  Google Scholar 

  29. Abolfazl Zahedi S, Demiral M, Roy A, Silberschmidt VV (2013) FE/SPH modelling of orthogonal micro-machining of fcc single crystal. Comput Mater Sci 78:104–109. https://doi.org/10.1016/j.commatsci.2013.05.022

    Article  Google Scholar 

  30. Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J, Yoshinaga H (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann Manuf Technol 42(1):91–94. https://doi.org/10.1016/S0007-8506(07)62399-3

    Article  Google Scholar 

  31. Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann Manuf Technol 43(1):51–54. https://doi.org/10.1016/S0007-8506(07)62162-3

    Article  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  34. Alexander S (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  35. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem 91(19):4950–4963. https://doi.org/10.1021/j100303a014

    Article  Google Scholar 

  36. Alexander S, Vasily VB, Athanasios A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  37. Goel S, Luo X, Reuben RL, Pen H (2012) Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 284–285:65–72. https://doi.org/10.1016/j.wear.2012.02.010

    Article  Google Scholar 

  38. Oluwajobi A, Chen X (2011) The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining. Int J Autom Comput 8(3):326–332. https://doi.org/10.1007/s11633-011-0588-y

    Article  Google Scholar 

  39. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211

    Article  Google Scholar 

  40. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568

    Article  Google Scholar 

  41. Tersoff J (1990) Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 41(5):3248

    Article  Google Scholar 

  42. Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manuf. https://doi.org/10.1016/j.ijmachtools.2014.09.013

    Article  Google Scholar 

  43. Pastewka L, Klemenz A, Gumbsch P, Moseler M (2013) Screened empirical bond-order potentials for Si-C. Phys Rev B 87(20):205410

    Article  Google Scholar 

  44. Zhang J, Zhang J, Wang Z, Hartmaier A, Yan Y, Sun T (2017) Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation. Comput Mater Sci 131:55–61. https://doi.org/10.1016/j.commatsci.2017.01.043

    Article  Google Scholar 

  45. Vashishta P, Kalia RK, Nakano A, Rino JP (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101(10):103515. https://doi.org/10.1063/1.2724570

    Article  Google Scholar 

  46. Kikuchi H, Kalia RK, Nakano A, Vashishta P, Branicio PS, Shimojo F (2005) Brittle dynamic fracture of crystalline cubic silicon carbide (3C-SiC) via molecular dynamics simulation. J Appl Phys 98(10):103524. https://doi.org/10.1063/1.2135896

    Article  Google Scholar 

  47. Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide. Int J Mach Tools Manuf 88:214–222. https://doi.org/10.1016/j.ijmachtools.2014.10.007

    Article  Google Scholar 

  48. Sun X, Chen S, Cheng K, Huo D, Chu W (2006) Multiscale simulation on nanometric cutting of single crystal copper. Proc Inst Mech Eng Part B J Eng Manuf 220(7):1217–1222. https://doi.org/10.1243/09544054JEM540SC

    Article  Google Scholar 

  49. Pen HM, Liang YC, Luo XC, Bai QS, Goel S, Ritchie JM (2011) Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Comput Mater Sci 50(12):3431–3441. https://doi.org/10.1016/j.commatsci.2011.07.005

    Article  Google Scholar 

  50. Ernst U, Merchant M (1941) Chip formation, friction and high quality machined surface. American Society of Metal, Russell Township

    Google Scholar 

  51. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann Manuf Technol 50(1):61–64. https://doi.org/10.1016/S0007-8506(07)62071-X

    Article  Google Scholar 

  52. Özel T (2009) Computational modelling of 3D turning: influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209(11):5167–5177. https://doi.org/10.1016/j.jmatprotec.2009.03.002

    Article  Google Scholar 

  53. Denkena B, Lucas A, Bassett E (2011) Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load. CIRP Ann Manuf Technol 60(1):73–76. https://doi.org/10.1016/j.cirp.2011.03.098

    Article  Google Scholar 

  54. Özel T, Karpat Y, Srivastava A (2008) Hard turning with variable micro-geometry PcBN tools. CIRP Ann Manuf Technol 57(1):73–76. https://doi.org/10.1016/j.cirp.2008.03.063

    Article  Google Scholar 

  55. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  56. Chien KL (1953) The influence of tool sharpness on the mechanics of metal cutting (PhD). Massachusetts Instiute of Technology, Cambridge

    Google Scholar 

  57. Albrecht P (1960) New developments in the theory of the metal-cutting process: part I. The ploughing process in metal cutting. J Eng Ind 82(4):348–357. https://doi.org/10.1115/1.3664242

    Article  Google Scholar 

  58. Masuko M (1953) Fundamental researches on the metal cutting. I. A new analysis of cutting force. Trans Soc Mech Eng (Japan) 19:32–39

    Article  Google Scholar 

  59. Wyen C-F, Knapp W, Wegener K (2011) A new method for the characterisation of rounded cutting edges. Int J Adv Manuf Technol 59(9):899–914. https://doi.org/10.1007/s00170-011-3555-4

    Article  Google Scholar 

  60. Wyen CF, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann Manuf Technol 59(1):93–96. https://doi.org/10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  61. Denkena B, Reichstein M, Brodehl J, de León García L (2005) Surface preparation, coating and wear performance of geometrically defined cutting edges. In: Proceedings of the 5th international conference the coatings in manufacturing engineering, 2005. pp 5–7

  62. Yussefian NZ, Koshy P (2013) Parametric characterization of the geometry of honed cutting edges. Precis Eng 37(3):746–752. https://doi.org/10.1016/j.precisioneng.2013.02.007

    Article  Google Scholar 

  63. Denkena B, Koehler J, Rehe M (2012) Influence of the honed cutting edge on tool wear and surface integrity in slot milling of 42CrMo4 steel. Proc CIRP 1:190–195. https://doi.org/10.1016/j.procir.2012.04.033

    Article  Google Scholar 

  64. Xu F, Wang J, Fang F, Zhang X (2017) A study on the tool edge geometry effect on nano-cutting. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9922-4

    Article  Google Scholar 

  65. Zong WJ, Li D, Sun T, Cheng K (2006) Contact accuracy and orientations affecting the lapped tool sharpness of diamond cutting tools by mechanical lapping. Diam Relat Mater 15(9):1424–1433. https://doi.org/10.1016/j.diamond.2005.10.066

    Article  Google Scholar 

  66. Moriwaki T (1989) Machinability of copper in ultra-precision micro diamond cutting. CIRP Ann Manuf Technol 38(1):115–118. https://doi.org/10.1016/S0007-8506(07)62664-X

    Article  Google Scholar 

  67. Soãres S (2003) Nanometer edge and surface imaging using optical scatter. Precis Eng 27(1):99–102. https://doi.org/10.1016/S0141-6359(02)00185-X

    Article  MathSciNet  Google Scholar 

  68. Born DK, Goodman WA (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25(4):247–257. https://doi.org/10.1016/S0141-6359(00)00069-6

    Article  Google Scholar 

  69. Shi M, Lane B, Mooney CB, Dow TA, Scattergood RO (2010) Diamond tool wear measurement by electron-beam-induced deposition. Precis Eng 34(4):718–721. https://doi.org/10.1016/j.precisioneng.2010.03.009

    Article  Google Scholar 

  70. Fang FZ (1998) Nano-turning of single crystal silicon. J Mater Process Technol 82(1–3):95–101. https://doi.org/10.1016/S0924-0136(98)00024-7

    Article  Google Scholar 

  71. Li XP, Rahman M, Liu K, Neo KS, Chan CC (2003) Nano-precision measurement of diamond tool edge radius for wafer fabrication. J Mater Process Technol 140(1–3):358–362. https://doi.org/10.1016/S0924-0136(03)00757-X

    Article  Google Scholar 

  72. Gao W, Motoki T, Kiyono S (2006) Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor. Precis Eng 30(4):396–405. https://doi.org/10.1016/j.precisioneng.2005.11.008

    Article  Google Scholar 

  73. Gao W, Asai T, Arai Y (2009) Precision and fast measurement of 3D cutting edge profiles of single point diamond micro-tools. CIRP Ann Manuf Technol 58(1):451–454. https://doi.org/10.1016/j.cirp.2009.03.009

    Article  Google Scholar 

  74. Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP J Manufact Sci Technol 5(2):108–126. https://doi.org/10.1016/j.cirpj.2012.03.004

    Article  Google Scholar 

  75. Shimizu Y, Asai T, Gao W (2011) Evaluation of nanometer cutting tool edge for nanofabrication. INTECH Open Access Publisher, Croatia

    Book  Google Scholar 

  76. Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81. https://doi.org/10.1016/S0924-0136(03)00846-X

    Article  Google Scholar 

  77. Klocke F, Kratz H (2005) Advanced tool edge geometry for high precision hard turning. CIRP Ann Manuf Technol 54(1):47–50. https://doi.org/10.1016/S0007-8506(07)60046-8

    Article  Google Scholar 

  78. Tang X, Nakamoto K, Obata K, Takeuchi Y (2013) Ultraprecision micromachining of hard material with tool wear suppression by using diamond tool with special chamfer. CIRP Ann Manuf Technol 62(1):51–54. https://doi.org/10.1016/j.cirp.2013.03.094

    Article  Google Scholar 

  79. Thiele JD, Melkote SN (1999) Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J Mater Process Technol 94(2–3):216–226. https://doi.org/10.1016/S0924-0136(99)00111-9

    Article  Google Scholar 

  80. M’Saoubi R, Chandrasekaran H (2004) Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Int J Mach Tools Manuf 44(2–3):213–224. https://doi.org/10.1016/j.ijmachtools.2003.10.006

    Article  Google Scholar 

  81. Childs THC (2010) Surface energy, cutting edge radius and material flow stress size effects in continuous chip formation of metals. CIRP J Manufact Sci Technol 3(1):27–39. https://doi.org/10.1016/j.cirpj.2010.07.008

    Article  MathSciNet  Google Scholar 

  82. Jiwang Y, Hongwei Z, Tsunemoto K (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol 24(7):075018

    Article  Google Scholar 

  83. Ng CK, Melkote SN, Rahman M, Senthil Kumar A (2006) Experimental study of micro- and nano-scale cutting of aluminum 7075-T6. Int J Mach Tools Manuf 46(9):929–936. https://doi.org/10.1016/j.ijmachtools.2005.08.004

    Article  Google Scholar 

  84. Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49(5):650–660. https://doi.org/10.1016/j.ijmecsci.2006.09.012

    Article  Google Scholar 

  85. Fang FZ, Chen LJ (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann Manuf Technol 49(1):17–20. https://doi.org/10.1016/S0007-8506(07)62887-X

    Article  Google Scholar 

  86. Fang FZ, Venkatesh VC, Zhang GX (2002) Diamond turning of soft semiconductors to obtain nanometric mirror surfaces. Int J Adv Manuf Technol 19(9):637–641. https://doi.org/10.1007/s001700200107

    Article  Google Scholar 

  87. Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22(9):703–707. https://doi.org/10.1007/s00170-003-1593-2

    Article  Google Scholar 

  88. Fang FZ, Xu FF, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80(1–4):591–598. https://doi.org/10.1007/s00170-015-7032-3

    Article  Google Scholar 

  89. Ranganath S, Campbell AB, Gorkiewicz DW (2007) A model to calibrate and predict forces in machining with honed cutting tools or inserts. Int J Mach Tools Manuf 47(5):820–840. https://doi.org/10.1016/j.ijmachtools.2006.06.019

    Article  Google Scholar 

  90. Lucca DA, Seo YW, Komanduri R (1993) Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann Manuf Technol 42(1):83–86. https://doi.org/10.1016/S0007-8506(07)62397-X

    Article  Google Scholar 

  91. Fang FZ, Wu H, Liu XD, Liu YC, Ng ST (2003) Tool geometry study in micromachining. J Micromech Microeng 13(5):726

    Article  Google Scholar 

  92. Storch B, Zawada-Tomkiewicz A (2012) Distribution of unit forces on the tool edge rounding in the case of finishing turning. Int J Adv Manuf Technol 60(5–8):453–461. https://doi.org/10.1007/s00170-011-3617-7

    Article  Google Scholar 

  93. Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195(1–3):204–211. https://doi.org/10.1016/j.jmatprotec.2007.04.137

    Article  Google Scholar 

  94. Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47(1):45–49

    Article  Google Scholar 

  95. Liu K, Li XP, Rahman M, Neo KS, Liu XD (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32(7–8):631–637. https://doi.org/10.1007/s00170-005-0364-7

    Article  Google Scholar 

  96. Arefin S, Li XP, Rahman M, Liu K (2007) The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer. Int J Adv Manuf Technol 31(7–8):655–662. https://doi.org/10.1007/s00170-005-0245-0

    Article  Google Scholar 

  97. Li X, Cai M, Rahman M, Liang S (2010) Study of the upper bound of tool edge radius in nanoscale ductile mode cutting of silicon wafer. Int J Adv Manuf Technol 48(9–12):993–999. https://doi.org/10.1007/s00170-009-2347-6

    Article  Google Scholar 

  98. Ji CH, Shi J, Liu ZQ, Wang YC (2013) Comparison of tool–chip stress distributions in nano-machining of monocrystalline silicon and copper. Int J Mech Sci 77:30–39. https://doi.org/10.1016/j.ijmecsci.2013.09.024

    Article  Google Scholar 

  99. Hosseini SV, Vahdati M (2012) Modeling the effect of tool edge radius on contact zone in nanomachining. Comput Mater Sci 65:29–36. https://doi.org/10.1016/j.commatsci.2012.06.037

    Article  Google Scholar 

  100. Fang FZ, Lee LC, Liu XD (2005) Mean flank temperature measurement in high speed dry cutting of magnesium alloy. J Mater Process Technol 167(1):119–123. https://doi.org/10.1016/j.jmatprotec.2004.10.002

    Article  Google Scholar 

  101. Davies MA, Ueda T, M’Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. CIRP Ann Manuf Technol 56(2):581–604. https://doi.org/10.1016/j.cirp.2007.10.009

    Article  Google Scholar 

  102. Vernaza-Peña KM, Mason JJ, Li M (2002) Experimental study of the temperature field generated during orthogonal machining of an aluminum alloy. Exp Mech 42(2):221–229. https://doi.org/10.1007/bf02410886

    Article  Google Scholar 

  103. Sutter G, Ranc N (2007) Temperature fields in a chip during high-speed orthogonal cutting—an experimental investigation. Int J Mach Tools Manuf 47(10):1507–1517. https://doi.org/10.1016/j.ijmachtools.2006.11.012

    Article  Google Scholar 

  104. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  105. Akbar F, Mativenga P, Sheikh MA (2010) An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int J Adv Manuf Technol 46(5–8):491–507. https://doi.org/10.1007/s00170-009-2117-5

    Article  Google Scholar 

  106. Outeiro JC, Dias AM, Jawahir IS (2006) On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations. CIRP Ann Manuf Technol 55(1):111–116. https://doi.org/10.1016/S0007-8506(07)60378-3

    Article  Google Scholar 

  107. Yi Karpat, Tr Özel (2008) Mechanics of high speed cutting with curvilinear edge tools. Int J Mach Tools Manuf 48(2):195–208. https://doi.org/10.1016/j.ijmachtools.2007.08.015

    Article  Google Scholar 

  108. Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192–193:607–612. https://doi.org/10.1016/j.jmatprotec.2007.04.028

    Article  Google Scholar 

  109. Zong WJ, Sun T, Li D, Cheng K, Liang YC (2008) XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manuf 48(15):1678–1687. https://doi.org/10.1016/j.ijmachtools.2008.06.008

    Article  Google Scholar 

  110. Yan J, Oowada T, Zhou T, Kuriyagawa T (2009) Precision machining of microstructures on electroless-plated NiP surface for molding glass components. J Mater Process Technol 209(10):4802–4808. https://doi.org/10.1016/j.jmatprotec.2008.12.008

    Article  Google Scholar 

  111. Tong Z, Liang YC, Yang XC, Luo XC (2014) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools. Int J Adv Manuf Technol 74(9–12):1709–1718. https://doi.org/10.1007/s00170-014-6087-x

    Article  Google Scholar 

  112. Woon K, Rahman M (2010) The effect of tool edge radius on the chip formation behavior of tool-based micromachining. Int J Adv Manuf Technol 50(9–12):961–977. https://doi.org/10.1007/s00170-010-2574-x

    Article  Google Scholar 

  113. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2006.12.007

    Article  Google Scholar 

  114. Woon KS, Rahman M (2010) Extrusion-like chip formation mechanism and its role in suppressing void nucleation. CIRP Ann Manuf Technol 59(1):129–132. https://doi.org/10.1016/j.cirp.2010.03.094

    Article  Google Scholar 

  115. Kim C-J, Bono M, Ni J (2002) Experimental analysis of chip formation in micro-milling. Technical papers-society of manufacturing engineers-all series

  116. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3(1):6

    Article  Google Scholar 

  117. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62(4):327–330. https://doi.org/10.1016/S0924-0136(96)02429-6

    Article  Google Scholar 

  118. Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559. https://doi.org/10.1016/j.jmatprotec.2011.05.022

    Article  Google Scholar 

  119. Liu ZQ, Shi ZY, Wan Y (2013) Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf Technol 69(5–8):1219–1232. https://doi.org/10.1007/s00170-013-5109-4

    Article  Google Scholar 

  120. Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A 108(4):809–818. https://doi.org/10.1007/s00339-012-6973-8

    Article  Google Scholar 

  121. Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4–5):529–535. https://doi.org/10.1016/j.ijmachtools.2004.09.001

    Article  Google Scholar 

  122. Son S, Lim H, Ahn J (2006) The effect of vibration cutting on minimum cutting thickness. Int J Mach Tools Manuf 46(15):2066–2072. https://doi.org/10.1016/j.ijmachtools.2005.12.011

    Article  Google Scholar 

  123. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  124. Woon KS, Rahman M, Neo KS, Liu K (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int J Mach Tools Manuf 48(12–13):1395–1407. https://doi.org/10.1016/j.ijmachtools.2008.05.001

    Article  Google Scholar 

  125. Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J Mater Process Technol 211(3):339–355. https://doi.org/10.1016/j.jmatprotec.2010.10.006

    Article  Google Scholar 

  126. Wang HX, Dong XY, Dong S (2002) Generation of surface micro-topography in diamond turning. J Harbin Inst Technol 34(4):509–517

    Google Scholar 

  127. Bassett E (2013) Belastungsspezifische Auslegung und Herstellung von Schneidkanten für Drehwerkzeuge. PZH Produktionstechnisches Zentrum, Garbsen

    Google Scholar 

  128. Ohbuchi Y, Obikawa T (2003) Finite element modeling of chip formation in the domain of negative rake angle cutting. J Eng Mater Technol 125(3):324–332. https://doi.org/10.1115/1.1590999

    Article  Google Scholar 

  129. Kountanya RK A high-magnification experimental study of orthogonal cutting with edge-honed tools. In: ASME proceedings of the ASME manufacturing engineering division MED-Vol. 12, 2001 ASME international mechanical engineering congress and exposition, NY, 2001. Citeseer

  130. Chen L, El-Wardany TI, Nasr M, Elbestawi MA (2006) Effects of edge preparation and feed when hard turning a hot work die steel with polycrystalline cubic boron nitride tools. CIRP Ann Manuf Technol 55(1):89–92. https://doi.org/10.1016/S0007-8506(07)60373-4

    Article  Google Scholar 

  131. Tönshoff HK, Arendt C, Amor RB (2000) Cutting of hardened steel. CIRP Ann Manuf Technol 49(2):547–566. https://doi.org/10.1016/S0007-8506(07)63455-6

    Article  Google Scholar 

  132. Ng E-G (2001) Modelling of the cutting process when machining hardened steel with polycrystalline cubic boron nitride (PCBN) tooling. The University of Birmingham, Birmingham

    Google Scholar 

  133. Nasr MNA, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tools Manuf 47(2):401–411. https://doi.org/10.1016/j.ijmachtools.2006.03.004

    Article  Google Scholar 

  134. Kountanya RK (2002) Process mechanics of metal cutting with edge radiused and worn tools. University of Michigan, Michigan

    Google Scholar 

  135. Kim C-J, Mayor R, Ni J (2012) Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge. Int J Precis Eng Manuf 13(8):1303–1309. https://doi.org/10.1007/s12541-012-0173-5

    Article  Google Scholar 

  136. Liu X, DeVor RE, Kapoor SG (2005) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128(2):474–481. https://doi.org/10.1115/1.2162905

    Article  Google Scholar 

  137. Denkena B, Köhler J, Mengesha MS (2012) Influence of the cutting edge rounding on the chip formation process: part 1. Investigation of material flow, process forces, and cutting temperature. Prod Eng Res Devel 6(4):329–338. https://doi.org/10.1007/s11740-012-0366-x

    Article  Google Scholar 

  138. Xu F, Fang F, Zhu Y, Zhang X (2017) Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting. Nanoscale Res Lett 12(1):289. https://doi.org/10.1186/s11671-017-1990-3

    Article  Google Scholar 

  139. Xu F, Fang F, Zhang X (2017) Side flow effect on surface generation in nano cutting. Nanoscale Res Lett 12(1):359. https://doi.org/10.1186/s11671-017-2136-3

    Article  Google Scholar 

  140. Kümmel J, Gibmeier J, Müller E, Schneider R, Schulze V, Wanner A (2014) Detailed analysis of microstructure of intentionally formed built-up edges for improving wear behaviour in dry metal cutting process of steel. Wear 311(1–2):21–30. https://doi.org/10.1016/j.wear.2013.12.012

    Article  Google Scholar 

  141. Kuznetsov V (1966) Metal transfer and build-up in friction and cutting. Pergamon Press, Oxford

    Google Scholar 

  142. Ozcatalbas Y (2003) Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Mater Des 24(3):215–221. https://doi.org/10.1016/S0261-3069(02)00146-2

    Article  Google Scholar 

  143. Uhlmann E, Henze S, Brömmelhoff K (2015) Influence of the built-up edge on the stress state in the chip formation zone during orthogonal cutting of AISI1045. Proc CIRP 31:310–315. https://doi.org/10.1016/j.procir.2015.03.101

    Article  Google Scholar 

  144. Fang N, Pai PS, Mosquea S (2009) The effect of built-up edge on the cutting vibrations in machining 2024-T351 aluminum alloy. Int J Adv Manuf Technol 49(1):63–71. https://doi.org/10.1007/s00170-009-2394-z

    Article  Google Scholar 

  145. Gómez-Parra A, Álvarez-Alcón M, Salguero J, Batista M, Marcos M (2013) Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear 302(1–2):1209–1218. https://doi.org/10.1016/j.wear.2012.12.001

    Article  Google Scholar 

  146. Kümmel J, Braun D, Gibmeier J, Schneider J, Greiner C, Schulze V, Wanner A (2015) Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. J Mater Process Technol 215:62–70. https://doi.org/10.1016/j.jmatprotec.2014.07.032

    Article  Google Scholar 

  147. Tauhiduzzaman M, Veldhuis S (2014) Effect of material microstructure and tool geometry on surface generation in single point diamond turning. Precis Eng 38(3):481–491

    Article  Google Scholar 

  148. Saurav G, Alexander S, Xichun L, Anupam A, Robert LR (2013) Anisotropy of single-crystal 3C–SiC during nanometric cutting. Modell Simul Mater Sci Eng 21(6):065004

    Article  Google Scholar 

  149. Zong WJ, Li ZQ, Zhang L, Liang YC, Sun T, An CH, Zhang JF, Zhou L, Wang J (2013) Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals. Int J Adv Manuf Technol 68(9):1927–1936. https://doi.org/10.1007/s00170-013-4804-5

    Article  Google Scholar 

  150. Zhao T, Zhou JM, Bushlya V, Ståhl JE (2017) Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0065-z

    Article  Google Scholar 

  151. Yue X, Xu M, Du W, Chu C (2017) Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic. Opt Mater. https://doi.org/10.1016/j.optmat.2016.04.017

    Article  Google Scholar 

  152. Kishawy HA, Elbestawi MA (1999) Effects of process parameters on material side flow during hard turning. Int J Mach Tool Manuf. https://doi.org/10.1016/s0890-6955(98)00084-4

    Article  Google Scholar 

  153. Wu X, Li L, Zhao M, He N (2015) Experimental investigation of specific cutting energy and surface quality based on negative effective rake angle in micro turning. Int J Adv Manuf Technol 82(9):1941–1947. https://doi.org/10.1007/s00170-015-7548-6

    Article  Google Scholar 

  154. Childs THC, Dornfeld D, Lee DE, Min S, Sekiya K, Tezuka R, Yamane Y (2008) The influence of cutting edge sharpness on surface finish in facing with round nosed cutting tools. CIRP J Manufact Sci Technol 1(2):70–75. https://doi.org/10.1016/j.cirpj.2008.09.001

    Article  Google Scholar 

  155. Childs THC, Sekiya K, Tezuka R, Yamane Y, Dornfeld D, Lee DE, Min S, Wright PK (2008) Surface finishes from turning and facing with round nosed tools. CIRP Ann Manuf Technol 57(1):89–92. https://doi.org/10.1016/j.cirp.2008.03.121

    Article  Google Scholar 

  156. Zong WJ, Huang YH, Zhang YL, Sun T (2014) Conservation law of surface roughness in single point diamond turning. Int J Mach Tools Manuf 84:58–63. https://doi.org/10.1016/j.ijmachtools.2014.04.006

    Article  Google Scholar 

  157. Cheung CF, Lee WB (2000) A multi-spectrum analysis of surface roughness formation in ultra-precision machining. Precis Eng 24(1):77–87. https://doi.org/10.1016/S0141-6359(99)00033-1

    Article  Google Scholar 

  158. Sata T, Li M, Takata S, Hiraoka H, Li CQ, Xing XZ, Xiao XG (1985) Analysis of surface roughness generation in turning operation and its applications. CIRP Ann Manuf Technol 34(1):473–476. https://doi.org/10.1016/S0007-8506(07)61814-9

    Article  Google Scholar 

  159. Kong MC, Lee WB, Cheung CF, To S (2006) A study of materials swelling and recovery in single-point diamond turning of ductile materials. J Mater Process Technol 180(1–3):210–215. https://doi.org/10.1016/j.jmatprotec.2006.06.006

    Article  Google Scholar 

  160. Schaal N, Kuster F, Wegener K (2015) Springback in metal cutting with high cutting speeds. Proc CIRP 31:24–28

    Article  Google Scholar 

  161. Grzesik W (1996) A revised model for predicting surface roughness in turning. Wear 194(1):143–148. https://doi.org/10.1016/0043-1648(95)06825-2

    Article  Google Scholar 

  162. He C, Zong W, Sun T (2016) Origins for the size effect of surface roughness in diamond turning. Int J Mach Tools Manuf 106:22–42

    Article  Google Scholar 

  163. Pekelharing A, Gieszen C (1971) Material side flow in finish turning. Ann CIRP 20(1):21–22

    Google Scholar 

  164. Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tools Manuf 46(14):1778–1785. https://doi.org/10.1016/j.ijmachtools.2005.11.014

    Article  Google Scholar 

  165. Kishawy H, Haglund A, Balazinski M (2006) Modelling of material side flow in hard turning. CIRP Ann Manuf Technol 55(1):85–88

    Article  Google Scholar 

  166. Cheung CF, Lee WB (2000) A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning. Int J Mach Tools Manuf 40(7):979–1002. https://doi.org/10.1016/S0890-6955(99)00103-0

    Article  Google Scholar 

  167. Yingfei G, Jiuhua X, Hui Y (2010) Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear 269(11–12):699–708. https://doi.org/10.1016/j.wear.2009.09.002

    Article  Google Scholar 

  168. Lai M, Zhang X, Fang F, Bi M (2017) Fundamental investigation on partially overlapped nano-cutting of monocrystalline germanium. Precis Eng 49:160–168. https://doi.org/10.1016/j.precisioneng.2017.02.004

    Article  Google Scholar 

  169. He CL, Zong WJ, Cao ZM, Sun T (2015) Theoretical and empirical coupled modeling on the surface roughness in diamond turning. Mater Des 82:216–222. https://doi.org/10.1016/j.matdes.2015.05.058

    Article  Google Scholar 

  170. Zhang SJ, To S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95. https://doi.org/10.1016/j.ijmachtools.2015.02.001

    Article  Google Scholar 

  171. Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191–196. https://doi.org/10.1016/j.precisioneng.2016.08.004

    Article  Google Scholar 

  172. Wu X, Li L, He N, Zhao M, Zhan Z (2015) Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper. Int J Adv Manuf Technol 79(1–4):321–327. https://doi.org/10.1007/s00170-015-6828-5

    Article  Google Scholar 

  173. Fang FZ, Liu YC (2004) On minimum exit-burr in micro cutting. J Micromech Microeng 14(7):984

    Article  Google Scholar 

  174. Lai M, Zhang X, Fang F (2017) Crystal orientation effect on the subsurface deformation of monocrystalline germanium in nanometric cutting. Nanoscale Res Lett 12(1):296. https://doi.org/10.1186/s11671-017-2047-3

    Article  Google Scholar 

  175. Shi J, Wang Y, Yang X (2013) Nano-scale machining of polycrystalline coppers—effects of grain size and machining parameters. Nanoscale Res Lett 8(1):500. https://doi.org/10.1186/1556-276x-8-500

    Article  Google Scholar 

  176. Simoneau A, Ng E, Elbestawi MA (2006) Surface defects during microcutting. Int J Mach Tools Manuf 46(12–13):1378–1387. https://doi.org/10.1016/j.ijmachtools.2005.10.001

    Article  Google Scholar 

  177. Nishiguchi T, Maeda Y, Masuda M, Sawa M, Uehara K (1988) Mechanism of micro chip formation in diamond turning of Al-Mg alloy. CIRP Ann Manuf Technol 37(1):117–120. https://doi.org/10.1016/S0007-8506(07)61599-6

    Article  Google Scholar 

  178. Li J, Fang Q, Liu B, Liu Y (2016) The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation. Appl Surf Sci 384:419–431. https://doi.org/10.1016/j.apsusc.2016.05.051

    Article  Google Scholar 

  179. Ding X, Butler DL, Lim GC, Cheng CK, Shaw KC, Liu K, Fong WS, Zheng HY (2009) Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam. J Micromech Microeng 19(2):025005

    Article  Google Scholar 

  180. Ding X, Lee L, Butler D, Cheng C (2009) The effects of hard particles on the surface quality when micro-cutting aluminum 6061 T6. J Micromech Microeng 19(11):115013

    Article  Google Scholar 

  181. Yuan ZJ, Lee WB, Yao YX, Zhou M (1994) Effect of crystallographic orientation on cutting forces and surface quality in diamond cutting of single crystal. CIRP Ann Manuf Technol 43(1):39–42. https://doi.org/10.1016/S0007-8506(07)62159-3

    Article  Google Scholar 

  182. Furukawa Y, Moronuki N (1988) Effect of material properties on ultra precise cutting processes. CIRP Ann. https://doi.org/10.1016/s0007-8506(07)61598-4

    Article  Google Scholar 

  183. Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Phil Mag 86(33–35):5567–5579. https://doi.org/10.1080/14786430600567739

    Article  Google Scholar 

  184. Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57(15):4404–4415. https://doi.org/10.1016/j.actamat.2009.06.002

    Article  Google Scholar 

  185. Kim J-Y, Jang D, Greer JR (2009) Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr Mater 61(3):300–303. https://doi.org/10.1016/j.scriptamat.2009.04.012

    Article  Google Scholar 

  186. Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater 109:375–393. https://doi.org/10.1016/j.actamat.2016.01.049

    Article  Google Scholar 

  187. Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103(8):083539. https://doi.org/10.1063/1.2884584

    Article  Google Scholar 

  188. Torrents Abad O, Wheeler JM, Michler J, Schneider AS, Arzt E (2016) Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Mater 103:483–494. https://doi.org/10.1016/j.actamat.2015.10.016

    Article  Google Scholar 

  189. Kaira CS, Singh SS, Kirubanandham A, Chawla N (2016) Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression. Acta Mater 120:56–67. https://doi.org/10.1016/j.actamat.2016.08.030

    Article  Google Scholar 

  190. Shan ZW, Mishra RK, Syed Asif SA, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7 (2):115–119. http://www.nature.com/nmat/journal/v7/n2/suppinfo/nmat2085_S1.html

  191. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58(2):566–587. https://doi.org/10.1016/j.cirp.2009.09.002

    Article  Google Scholar 

  192. Lai M, Zhang XD, Fang FZ, Wang YF, Feng M, Tian WH (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8(1):1–10. https://doi.org/10.1186/1556-276x-8-13

    Article  Google Scholar 

  193. Ding X, Jarfors AEW, Lim GC, Shaw KC, Liu YC, Tang LJ (2012) A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precis Eng. https://doi.org/10.1016/j.precisioneng.2011.09.001

    Article  Google Scholar 

  194. Lee WB, To S, Cheung CF (2000) Effect of crystallographic orientation in diamond turning of copper single crystals. Scr Mater 42(10):937–945. https://doi.org/10.1016/S1359-6462(00)00329-8

    Article  Google Scholar 

  195. To S, Lee WB, Chan CY (1997) Ultraprecision diamond turning of aluminium single crystals. J Mater Process Technol. https://doi.org/10.1016/s0924-0136(96)02617-9

    Article  Google Scholar 

  196. Lawson BL, Kota N, Ozdoganlar OB (2008) Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminum. J Manuf Sci Eng 130(3):031116. https://doi.org/10.1115/1.2917268

    Article  Google Scholar 

  197. Zhu P, Fang F (2016) Study of the minimum depth of material removal in nanoscale mechanical machining of single crystalline copper. Comput Mater Sci 118:192–202. https://doi.org/10.1016/j.commatsci.2016.03.023

    Article  Google Scholar 

  198. Wang Z, Chen J, Wang G, Bai Q, Liang Y (2017) Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett 12(1):300. https://doi.org/10.1186/s11671-017-2046-4

    Article  Google Scholar 

  199. Li Z, Zhang X (2017) Subsurface deformation of germanium in ultra-precision cutting: characterization of micro-Raman spectroscopy. Int J Adv Manuf Technol 91(1):213–225. https://doi.org/10.1007/s00170-016-9749-z

    Article  Google Scholar 

  200. Yan JW, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng. https://doi.org/10.1016/j.precisioneng.2008.10.008

    Article  Google Scholar 

  201. Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann Manuf Technol 61(1):131–134. https://doi.org/10.1016/j.cirp.2012.03.070

    Article  Google Scholar 

  202. Wang S, An C, Zhang F, Wang J, Lei X, Zhang J (2016) An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int J Mach Tools Manuf 106:98–108. https://doi.org/10.1016/j.ijmachtools.2016.04.009

    Article  Google Scholar 

  203. Zong WJ, Cao ZM, He CL, Sun T (2015) Critical undeformed chip thickness of brittle materials in single point diamond turning. Int J Adv Manuf Technol 81(5–8):975–984. https://doi.org/10.1007/s00170-015-7264-2

    Article  Google Scholar 

  204. Cai MB, Li XP, Rahman M, Tay AAO (2007) Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon. Int J Mach Tools Manuf 47(3–4):562–569. https://doi.org/10.1016/j.ijmachtools.2006.05.006

    Article  Google Scholar 

  205. Li Z, Fang F, Chen J, Zhang X (2017) Machining approach of freeform optics on infrared materials via ultra-precision turning. Opt Express 25(3):2051–2062. https://doi.org/10.1364/oe.25.002051

    Article  Google Scholar 

  206. Mukaida M, Yan J (2017) Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf 115:2–14. https://doi.org/10.1016/j.ijmachtools.2016.11.004

    Article  Google Scholar 

  207. Suzuki N, Masuda S, Haritani M, Shamoto E (2004) Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting. In: Micro-nanomechatronics and human science, 2004 and the fourth symposium micro-nanomechatronics for information-based society, 2004, pp 133–138. https://doi.org/10.1109/mhs.2004.1421290

  208. Chryssolouris G, Anifantis N, Karagiannis S (1997) Laser assisted machining: an overview. J Manuf Sci Eng 119(4B):766–769. https://doi.org/10.1115/1.2836822

    Article  Google Scholar 

  209. Mohammadi H, Ravindra D, Kode SK, Patten JA (2015) Experimental work on micro laser-assisted diamond turning of silicon (111). J Manuf Process 19:125–128. https://doi.org/10.1016/j.jmapro.2015.06.007

    Article  Google Scholar 

  210. Mohammadi H, Patten JA (2017) Effect of thermal softening on anisotropy and ductile mode cutting of sapphire using micro-laser assisted machining. J Micro Nano-Manuf 5(1):011007. https://doi.org/10.1115/1.4035397

    Article  Google Scholar 

  211. Fang FZ, Chen YH, Zhang XD, Hu XT, Zhang GX (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann Manuf Technol 60(1):527–530. https://doi.org/10.1016/j.cirp.2011.03.057

    Article  Google Scholar 

  212. Tanaka H, Shimada S (2013) Damage-free machining of monocrystalline silicon carbide. CIRP Ann Manuf Technol 62(1):55–58. https://doi.org/10.1016/j.cirp.2013.03.098

    Article  Google Scholar 

  213. Wang J, Fang F, Zhang X (2015) An experimental study of cutting performance on monocrystalline germanium after ion implantation. Precis Eng 39:220–223. https://doi.org/10.1016/j.precisioneng.2014.09.005

    Article  Google Scholar 

  214. Zhang XQ, Liu K, Kumar AS, Rahman M (2014) A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel. J Mater Process Technol 214(2):496–506. https://doi.org/10.1016/j.jmatprotec.2013.10.002

    Article  Google Scholar 

  215. Wang Y, Suzuki N, Shamoto E, Zhao Q (2011) Investigation of tool wear suppression in ultraprecision diamond machining of die steel. Precis Eng 35(4):677–685. https://doi.org/10.1016/j.precisioneng.2011.05.003

    Article  Google Scholar 

  216. Huang S, Liu X, Chen FZ, Zheng HX, Yang XL, Wu LB, Song JL, Xu WJ (2015) Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7912-6

    Article  Google Scholar 

  217. Nath C, Rahman M, Neo KS (2009) Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 49(14):1089–1095. https://doi.org/10.1016/j.ijmachtools.2009.07.006

    Article  Google Scholar 

  218. Mishra S, Yadava V (2015) Laser beam micromachining (LBMM)—a review. Opt Lasers Eng 73:89–122. https://doi.org/10.1016/j.optlaseng.2015.03.017

    Article  Google Scholar 

  219. Arnold JB, Morris TO, Sladky RE, Steger PJ (1977) Machinability studies of infrared window materials and metals. Opt Eng 16(4):164324. https://doi.org/10.1117/12.7972049

    Article  Google Scholar 

  220. Brinksmeier E, Glaebe R, Osmer J (2011) Surface integrity demands of high precision optical molds and realization by a new process chain. Proc Eng 19:40–43. https://doi.org/10.1016/j.proeng.2011.11.077

    Article  Google Scholar 

  221. Wang J, Fang F, Zhang X (2017) Nanometric cutting of silicon with an amorphous-crystalline layered structure: a molecular dynamics study. Nanoscale Res Lett 12(1):41. https://doi.org/10.1186/s11671-017-1829-y

    Article  Google Scholar 

  222. Ding X, Rahman M (2012) A study of the performance of cutting polycrystalline Al 6061 T6 with single crystalline diamond micro-tools. Precis Eng 36(4):593–603. https://doi.org/10.1016/j.precisioneng.2012.04.009

    Article  Google Scholar 

  223. Xu FF, Fang FZ, Zhang XD (2017) Hard particle effect on surface generation in nano-cutting. Appl Surf Sci 425:1020–1027. https://doi.org/10.1016/j.apsusc.2017.07.089

    Article  Google Scholar 

  224. Ge YF, Xu JH, Yang H, Luo SB, Fu YC (2008) Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol 203(1–3):166–175. https://doi.org/10.1016/j.jmatprotec.2007.09.070

    Article  Google Scholar 

  225. Wang SJ, Chen X, To S, Ouyang XB, Liu Q, Liu JW, Lee WB (2015) Effect of cutting parameters on heat generation in ultra-precision milling of aluminum alloy 6061. Int J Adv Manuf Technol 80(5–8):1265–1275. https://doi.org/10.1007/s00170-015-7072-8

    Article  Google Scholar 

  226. Fang FZ (2015) Suggestions of strategic development of manufactuirng: “Manufacturing 3.0”. People’s Daily, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors thank the supports of Science Challenge Project (No. TZ2018006), the National Natural Science Foundation (Nos. 61635008 & 51320105009), the National Key Research and Development Program (No. 2016YFB1102200), the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (No. B07014), and the Science Fondation Ireland (SFI) (No. 15/RP/B3208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhou Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F., Xu, F. Recent Advances in Micro/Nano-cutting: Effect of Tool Edge and Material Properties. Nanomanuf Metrol 1, 4–31 (2018). https://doi.org/10.1007/s41871-018-0005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-018-0005-z

Keywords

Navigation