Skip to main content
Log in

Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The objective of this research is to study the effects of zirconium and silver co-dopants on the photocatalytic reactivity of TiO2. Zirconium and silver co-doped titanium dioxide (Zr-Ag co-doped TiO2) was synthesized by sol-gel method. The molar ratio of silver was fixed at 5% mol, while the molar ratio of zirconium was varied at 5, 10, and 15% mol. The synthesized photocatalysts were calcined at 500 °C for 5 h. The characteristics of the photocatalysts were examined by X-ray diffraction spectroscopy (XRD), ultraviolet-visible spectroscopy (UV-Vis), and field emission scanning electron microscope (FESEM). The XRD results indicated that the anatase phase of TiO2 and metal doping did not affect the crystal phase of TiO2, and the FESEM confirmed the presence of silver and zirconium in co-doped TiO2. After doping, the band gap energy of the doped TiO2 was significantly reduced due to the red shift effect. The photocatalytic reactivity and kinetics of the photocatalysts were investigated by photocatalytic decolorization of methylene blue (MB) under UV and fluorescent light. Photocatalytic decolorization of MB dramatically improved when TiO2 was co-doped with silver and zirconium. The antibacterial efficiency of Zr-Ag co-doped TiO2 against Escherichia coli (E. coli) was also investigated under fluorescent light and in the dark. The synergistic effects of zirconium and silver dopants on the photocatalytic and antibacterial activity of TiO2 were observed. The 5% mol of silver and 10% mol of zirconium co-doped TiO2 exhibited the highest decolorization efficiency at 98.07% under fluorescent light and could completely inhibit E. coli under fluorescent light within 20 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Joshi, S.M.: The sick building syndrome. Indian J Occup Environ Med. 12(2), 61–64 (2008)

    Google Scholar 

  2. Pham, T.D., Lee, B.K.: Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by Ag-TiO2/GF under visible light. J Colloid Interface Sci. 428, 24–31 (2014)

    CAS  Google Scholar 

  3. Panagopoulos, I.K., Karayannis, A.N., Kassomenos, P., Aravossis, K.: A CFD simulation study of VOC and formaldehyde indoor air pollution dispersion in an apartment as part of an indoor pollution management plan. Aerosol Air Qual Res. 11, 758–762 (2011)

    CAS  Google Scholar 

  4. Centers for Disease Control and Prevention and U.S. Department of Housing and Urban Development.: Healthy housing reference manual. Atlanta: US Department of Health and Human Services (2006). https://www.cdc.gov/nceh/publications/books/housing/housing.htm. Accessed 18 April 2018

  5. Naghibi, S., Vahed, S., Torabi, O., Jamshidi, A., Golabgir, M.H.: Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: exerting the antimicrobial activity even after stoppage of illumination. Appl Surf Sci. 327, 371–378 (2015)

    CAS  Google Scholar 

  6. Pansamut, G., Pansamut, T., Suriyawong, A.: Removal of humic acid by photocatalytic process: effect of light intensity. Eng J. 17, 25–32 (2013)

    Google Scholar 

  7. Yan, H., Wang, X., Yao, M., Yao, X.: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog Nat Sci-Mater. 23(4), 402–407 (2013)

    CAS  Google Scholar 

  8. Binas, V., Venieri, D., Kotzias, D., Kiriakidis, G.: Modified TiO2-based photocatalysts for improved air and health quality. J Mater. 3, 3–16 (2017)

    Google Scholar 

  9. Li, K., An, X., Park, K.H., Khraisheh, M., Tang, J.: A critical review of CO2 photoconversion: catalysts and reactors. Catal Today. 224, 3–12 (2014)

    CAS  Google Scholar 

  10. Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L., Yurdakal, S.: Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C: Photochem Rev. 13, 224–245 (2012)

    CAS  Google Scholar 

  11. Yu, B., Leung, K.M., Guo, Q., Lau, W.M., Yang, J.: Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology. 22, (2011). https://doi.org/10.1088/0957-4484/22/11/115603

  12. Kapusuz, D., Park, J., Ozturk, A.: Sol–gel synthesis and photocatalytic activity of B and Zr co-doped TiO2. J Phys Chem Solids. 74, 1026–1031 (2013)

    CAS  Google Scholar 

  13. Kment, S., Kmentova, H., Kluson, P., Krysa, J., Hubicka, Z., Cirkva, V., Gregora, I., Solcova, O., Jastrabik, L.: Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J Colloid Interface Sci. 348, 198–205 (2010)

    CAS  Google Scholar 

  14. Chatterjee, D., Dasgupta, S.: Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C. 6, 186–205 (2005)

    CAS  Google Scholar 

  15. Chen, Q., Shi, W., Xu, Y., Wu, D., Sun, Y.: Visible-light-responsive Ag–Si codoped anatase TiO2 photocatalyst with enhanced thermal stability. Mater Chem Phys. 125, 825–832 (2011)

    CAS  Google Scholar 

  16. Huang, Q., Ma, W., Yan, X., Chen, Y., Zhu, S., Shen, S.: Photocatalytic decomposition of gaseous HCHO by ZrxTi1−xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. J Mol Catal A Chem. 366, 261–265 (2013)

    CAS  Google Scholar 

  17. Krejčíková, S., Matějová, L., Kočí, K., Obalová, L., Matěj, Z., Čapek, L., Šolcová, O.: Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications. Appl Catal B Environ. 111-112, 119–125 (2012)

    Google Scholar 

  18. Tongon, W., Chawengkijwanich, C., Chiarakorn, S.: Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol-gel technique. Superlattice Microst. 69, 108–121 (2014)

    CAS  Google Scholar 

  19. Banerjee, A.N., Hamnabard, N., Joo, S.W.: A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol–gel derived anatase TiO2 nanoparticles. J. Ceram. Int. 42, 12010–12026 (2016)

    CAS  Google Scholar 

  20. Miao, H., Hu, X., Fan, J., Li, C., Sun, Q., Hao, Y., Zhang, G., Bai, J., Hou, X.: Hydrothermal synthesis of TiO2 nanostructure films and their photoelectrochemical properties. Appl Surf Sci. 358, 418–424 (2015)

    CAS  Google Scholar 

  21. Putluru, S.S.R., Schill, L., Jensen, A.D., Siret, B., Tabaries, F., Fehrmann, R.: Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B Environ. 165, 628–635 (2015)

    CAS  Google Scholar 

  22. Shang, Z.G., Liu, Z.Q., Shang, P.J., Shang, J.K.: Synthesis of single-crystal TiO2 nanowire using titanium monoxide powder by thermal evaporation. J Mater Sci Technol. 28(5), 385–390 (2012)

    CAS  Google Scholar 

  23. Sun, H., Wang, C., Pang, S., Li, X., Tao, Y., Tang, H., Liu, M.: Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. J Non-Cryst Solids. 354, 1440–1443 (2008)

    CAS  Google Scholar 

  24. Jongprateep, O., Puranasamriddhi, R., Palomas, J.: Nanoparticulate titanium dioxide synthesized by sol–gel and solution combustion techniques. J. Ceram. Int. 41, S169–S173 (2015)

    CAS  Google Scholar 

  25. Yazıcı, M., Çomaklı, O., Yetim, T., Yetim, A.F., Çelik, A.: Effect of sol aging time on the wear properties of TiO2-SiO2 composite films prepared by a sol-gel method. Tribol Int. 104, 175–182 (2016)

    Google Scholar 

  26. Sun, M., Zhao, T., Li, Z., Ma, Z., Wang, J., Li, F.: Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separationroute. J. Ceram. Int. 42, 15926–15932 (2016)

    CAS  Google Scholar 

  27. Bineesh, K.V., Kim, D.K., Park, D.W.: Synthesis and characterization of zirconium-doped mesoporous nano-crystalline TiO2. Nanoscale. 2, 1222–1228 (2010)

    CAS  Google Scholar 

  28. Bsiri, N., Zrir, M.A., Bardaoui, A., Bouaїcha, M.: Morphological, structural and ellipsometric investigations of Cr doped TiO2 thin films prepared by sol–gel and spin coating. J Ceram Int. 42, 10599–10607 (2016)

    CAS  Google Scholar 

  29. Chekin, F., Bagheri, S., Hamid, S.B.A.: Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine. Sens Actuat B. 177, 898–903 (2013)

    CAS  Google Scholar 

  30. Mohite, V.S., Mahadik, M.A., Kumbhar, S.S., Hunge, Y.M., Kim, J.H., Moholkar, A.V., Rajpure, K.Y., Bhosale, C.H.: Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J Photochem Photobiol B Biol. 142, 204–211 (2015)

    CAS  Google Scholar 

  31. Juma, A., Acik, I.O., Oluwabi, A.T., Mere, A., Mikli, V., Danilson, M., Krunks, M.: Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. Appl Surf Sci. 387, 539–545 (2016)

    CAS  Google Scholar 

  32. Kim, S.W., Khan, R., Kim, T.J., Kim, W.J.: Synthesis, characterization, and application of Zr,S co-doped TiO2 as visible-light active photocatalyst. Bull Kor Chem Soc. 29, 1217–1223 (2008)

    CAS  Google Scholar 

  33. Ginting, M., Taslima, S., Sebayang, K., Aryanto, D., Sudiro, T., Sebayang, P.: Preparation and characterization of zinc oxide doped with ferrite and chromium. AIP Conf Proc. 1862, 030062(1–030062(5 (2016)

    Google Scholar 

  34. Cai, Y., Fan, H., Xu, M., Li, Q.: Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids Surf A: Physicochem Eng Aspects. 436, 787–795 (2013)

    CAS  Google Scholar 

  35. Plesch, G., Vargová, M., Vogt, U.F., Gorbár, M., Jesenák, K.: Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification. Mater Res Bull. 47, 1680–1686 (2012)

    CAS  Google Scholar 

  36. Li, Y., Ma, M., Chen, W., Li, L., Zen, M.: Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Mater Chem and Phys. 129, 501–505 (2011)

    CAS  Google Scholar 

  37. Tripathi, A.M., Nair, R.G., Samdarshi, S.K.: Visible active silver sensitized vanadium titanium mixed metal oxide photocatalyst nanoparticles through sol–gel technique. Sol Energy Mater Sol Cells. 94, 2379–2385 (2010)

    CAS  Google Scholar 

  38. Suwanchawalit, C., Wongnawa, S., Sriprang, P., Meanha, P.: Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. J. Ceram. Int. 38, 5201–5207 (2012)

    CAS  Google Scholar 

  39. Zhou, J., Cheng, Y., Yu, J.: Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J Photoch Photobiol A: Chem. 223, 82–87 (2011)

    CAS  Google Scholar 

  40. Inderjeet, S., Kumar, R., Bilaji, B.I.: Zirconium doped TiO2 nano-powder via halide free non-aqueous solvent controlled sol-gel route. J Env Chem Eng. 5, 2955–2963 (2017)

    Google Scholar 

  41. Surakerk, O., Sumaeth, C., Thammanoon, S.: Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts. Int J Hydrog Energy. 36, 5246–5261 (2011)

    Google Scholar 

  42. Chang, S.M., Doong, R.A.: Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. J Phys Chem B. 110, 20808–20814 (2006)

    CAS  Google Scholar 

  43. Aazam, E.S.: Visible light photocatalytic degradation of thiophene using Ag-TiO2/multi-walled carbon nanotubes nanocomposite. Ceram Int. 40, 6705–6711 (2014)

    CAS  Google Scholar 

  44. Kim, C.S., Shin, J.W., An, S.H., Jang, H.D., Kim, T.O.: Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts. Chem Eng J. 204-206, 40–47 (2012)

    CAS  Google Scholar 

  45. Talebian, N., Nilforoushan, M.R.: Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films. 518, 2210–2215 (2010)

    CAS  Google Scholar 

  46. Hyung, M.S.S., Jae, R.C., Hoe, J.H., Sang, M.K., Young, C.B.: Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photoch. Photobiol. A: Chem. 163, 37–44 (2004)

    Google Scholar 

  47. Le, T.N.T., Ton, N.Q.T., Tran, V.M., Nguyen, D.N., Vu, T.H.T.: TiO2 nanotubes with different Ag loading to enhance visible-light photocatalytic activity. J Nanomater. 1–7 (2017)

  48. Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., Li, Z.: Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv Mater Sci Eng. 1–7 (2014)

  49. Kumar, S.G., Devi, L.G.: Review on modified TiO2 Photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. (2011)

  50. Peerakiatkhajorn, P., Chawengkijwanich, C., Onreabroy, W., Chiarakorn, S.: Novel photocatalytic Ag/TiO2 thin film on polyvinyl chloride for gaseous BTEX treatment. Mater Sci Forum. 712, 133–145 (2012)

    CAS  Google Scholar 

  51. Carroll, J.P., Myles, A., Quilty, B., McCormack, D.E., Fagan, R., Hinder, S.J., Dionysiou, D.D., Pillai, S.C.: Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater. 324, 39–47 (2017)

    Google Scholar 

  52. Tatsuma, T., Takeda, S., Saitoh, S., Ohko, Y., Fujishima, A.: Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark. Electrochem Commun. 5, 793–796 (2003)

    CAS  Google Scholar 

  53. Guo, B.L., Han, P., Guo, L.C., Cao, Y.Q., Li, A.D., Kong, J.Z., Zhai H.F., Wu, D.: The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett. 10:336, 1–10 (2015)

  54. Liu, L., Liu, J., Wang, Y., Yan, X., Sun, D.D.: Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem. 35, 1418–1423 (2011)

    CAS  Google Scholar 

  55. Laohhasurayotin, K., Pookboonmee, S.: Preparation of Ag/TiO2/bamboo charcoal composite based on chemical and electrochemical synthesis: characterization and antibacterial study. NSTI-Nanotech. 1, 70–73 (2011)

    CAS  Google Scholar 

  56. Akhavan, O.: Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci. 336, 117–124 (2009)

    CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude to The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, and Center of Excellence on Energy Technology and Environment, PERDO, Bangkok, Thailand, and the Thailand Graduate Institute of Science and Technology’s (TGIST) scholarship (TG-55-20-55-049D) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriluk Chiarakorn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanitnon, P., Chiarakorn, S., Chawengkijwanich, C. et al. Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity. J Aust Ceram Soc 56, 579–590 (2020). https://doi.org/10.1007/s41779-019-00368-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00368-w

Keywords

Navigation