Skip to main content
Log in

Role of Skeletal Muscle in the Pathogenesis and Management of Type 2 Diabetes: A Special Focus on Asian Indians

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Type 2 diabetes (T2D) is one of the major global public health concerns. The incidence of T2D is expected to increase dramatically in the coming years globally as well as in India. Development of T2D is a result of desensitization of peripheral tissue to stimulation of insulin. Skeletal muscle is responsible for the majority of postprandial glucose uptake and is of the utmost importance to maintain glucose homeostasis. T2D is manifested by structural, functional, and metabolic impairment of skeletal muscle and is characterized as the primary site of insulin resistance in T2D patients. T2D patients exhibit impaired insulin-stimulated muscle glucose uptake, fat metabolic abnormality, increased accumulated muscle fat, and a dysbalance in muscle protein synthesis and breakdown. Skeletal muscle mitochondrial dysfunction also plays an essential role in the pathogenesis of insulin resistance. Skeletal muscle fiber shift and diabetes-associated loss of muscle mass and strength further worsen insulin sensitivity. This review provides a comprehensive overview of skeletal muscle pathophysiological changes in diabetes and discusses the potential therapies targeting skeletal muscle pathophysiology to ameliorate diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Similar content being viewed by others

Data availability

Not applicable

References

  1. Kaveeshwar SA, Cornwall J (2014) The current state of diabetes mellitus in India. Australas Med J 7(1):45. https://doi.org/10.4066/AMJ.2013.1979

    Article  Google Scholar 

  2. Evans PL, McMillin SL, Weyrauch LA, Witczak CA (2019) Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients. 11(10):2432. https://doi.org/10.3390/nu11102432

    Article  Google Scholar 

  3. Merz KE, Thurmond DC (2020) Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol 10(3):785. https://doi.org/10.1002/CPHY.C190029

    Article  Google Scholar 

  4. Hurrle S, Hsu WH (2017) The etiology of oxidative stress in insulin resistance. Biomed J 40(5):257. https://doi.org/10.1016/J.BJ.2017.06.007

    Article  Google Scholar 

  5. Abdul-Ghani MA, Defronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010:476279. https://doi.org/10.1155/2010/476279

    Article  Google Scholar 

  6. Rush EC, Freitas I, Plank LD (2009) Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr. 2009;102(4):632–641. https://doi.org/10.1017/S0007114508207221

  7. Ahlqvist E et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2

    Article  Google Scholar 

  8. Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L (2016) Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc 17(9):789–796. https://doi.org/10.1016/J.JAMDA.2016.04.019

    Article  Google Scholar 

  9. Pereira RM et al. (2017) Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. Motriz Revista de Educacao Fisica 23. Universidade Estadual Paulista UNESP. https://doi.org/10.1590/S1980-6574201700SI0004

  10. Bouskila M et al (2010) Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab 12(5):456–466. https://doi.org/10.1016/j.cmet.2010.10.006

    Article  CAS  Google Scholar 

  11. Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. https://doi.org/10.1038/378785a0

    Article  CAS  Google Scholar 

  12. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 148:114–131. https://doi.org/10.1016/J.PHARMTHERA.2014.11.016

    Article  Google Scholar 

  13. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(suppl_2):S157–S163. https://doi.org/10.2337/dc09-S302

    Article  CAS  Google Scholar 

  14. Huang X, Liu G, Guo J, Su Z (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483–1496. https://doi.org/10.7150/ijbs.27173

    Article  CAS  Google Scholar 

  15. Ng Y, Ramm G, Lopez JA, James DE (2008) Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metab 7(4):348–356. https://doi.org/10.1016/j.cmet.2008.02.008

    Article  CAS  Google Scholar 

  16. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664. https://doi.org/10.1056/NEJMOA031314

    Article  CAS  Google Scholar 

  17. Canadian K, Balasekaran G, Lewy V, Meza MP, Robertson R, Arslanian SA (1999) Insulin sensitivity in African-American children with and without family history of type 2 diabetes. Diabetes Care 22(8):1325–1329. https://doi.org/10.2337/DIACARE.22.8.1325

    Article  Google Scholar 

  18. Lopaschuk GD (2016) Fatty acid oxidation and its relation with insulin resistance and associated disorders. Ann Nutr Metab 68(Suppl. 3):15–20. https://doi.org/10.1159/000448357

    Article  Google Scholar 

  19. Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295(5):E1009–E1017. https://doi.org/10.1152/ajpendo.90558.2008

    Article  CAS  Google Scholar 

  20. Surowska A et al (2019) Effects of dietary protein and fat content on intrahepatocellular and intramyocellular lipids during a 6-day hypercaloric, high sucrose diet: a randomized controlled trial in normal weight healthy subjects. Nutrients. 11(1):209. https://doi.org/10.3390/NU11010209

    Article  Google Scholar 

  21. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119(5 Suppl 1):S10–S16. https://doi.org/10.1016/J.AMJMED.2006.01.009

    Article  Google Scholar 

  22. Lara-Castro C et al (2008) Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects. Metabolism 57(1):1–8. https://doi.org/10.1016/J.METABOL.2007.05.008

    Article  CAS  Google Scholar 

  23. Misra A, Sinha S, Kumar M, Jagannathan NR, Pandey RM (2003) Proton magnetic resonance spectroscopy study of soleus muscle in non-obese healthy and Type 2 diabetic Asian Northern Indian males: high intramyocellular lipid content correlates with excess body fat and abdominal obesity. Diabet Med 20(5):361–367. https://doi.org/10.1046/J.1464-5491.2003.00932.X

    Article  CAS  Google Scholar 

  24. Petersen KF, Dufour S, Feng J, et al 2006. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A. 103(48):18273–18277. https://doi.org/10.1073/pnas.0608537103

  25. Sucharita S et al (2019) Evidence of higher intramyocellular fat among normal and overweight Indians with prediabetes. Eur J Clin Nutr 73(10):1373–1381. https://doi.org/10.1038/S41430-019-0402-4

    Article  CAS  Google Scholar 

  26. Gemmink A et al (2021) Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: a super-resolution microscopy study in trained athletes and insulin resistant individuals. Biochim Biophys Acta Mol Cell Biol Lipids 1866(2):158852. https://doi.org/10.1016/j.bbalip.2020.158852

    Article  Google Scholar 

  27. Alghamdi A, Alhotti DZ, Sabico S, Al-Attas OS, Al-Daghri NM (2021) Associations of perilipin 3 with insulin resistance in Arab adults with type 2 diabetes. Dis Mark. 2021:4791915. https://doi.org/10.1155/2021/4791915

    Article  Google Scholar 

  28. Morales PE, Bucarey JL, Espinosa A (2017) Muscle lipid metabolism: role of lipid droplets and perilipins. J Diabetes Res. 2017:1789395 https://doi.org/10.1155/2017/1789395

    Article  Google Scholar 

  29. MacPherson REK, Peters SJ (2015) Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis. Appl Physiol Nutr Metab 40(7):641–651. https://doi.org/10.1139/apnm-2014-0485

    Article  CAS  Google Scholar 

  30. Conte M et al (2013) Increased Plin2 expression in human skeletal muscle is associated with sarcopenia and muscle weakness. PLoS One 8(8):e73709. https://doi.org/10.1371/journal.pone.0073709

    Article  CAS  Google Scholar 

  31. Covington JD et al (2015) Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary, and type 2 diabetic males. J Clin Endocrinol Metab 100(10):3683–3692. https://doi.org/10.1210/JC.2014-4125

    Article  CAS  Google Scholar 

  32. Pourteymour S et al (2015) Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 3(8):e12481. https://doi.org/10.14814/phy2.12481

    Article  CAS  Google Scholar 

  33. Zhang X et al (2022) Plin5 bidirectionally regulates lipid metabolism in oxidative tissues. Oxid Med Cell Longev 2022:1–11. https://doi.org/10.1155/2022/4594956

    Article  CAS  Google Scholar 

  34. Kimmel AR, Sztalryd C (2014) Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Curr Opin Lipidol 25(2):110. https://doi.org/10.1097/MOL.0000000000000057

    Article  CAS  Google Scholar 

  35. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E (2006) Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 291(4):E745. https://doi.org/10.1152/AJPENDO.00271.2005

    Article  CAS  Google Scholar 

  36. Alqudah A, Wedyan M, Qnais E, Jawarneh H, McClements L (2021) Plasma amino acids metabolomics’ important in glucose management in type 2 diabetes. Front Pharmacol 12:1786. https://doi.org/10.3389/FPHAR.2021.695418/BIBTEX

    Article  Google Scholar 

  37. Vanweert F, de Ligt M, Hoeks J, Hesselink MKC, Schrauwen P, Phielix E (2021) Elevated plasma branched-chain amino acid levels correlate with type 2 diabetes-related metabolic disturbances. J Clin Endocrinol Metab 106(4):e1827–e1836. https://doi.org/10.1210/CLINEM/DGAA751

    Article  Google Scholar 

  38. Vanweert F, Neinast M, Tapia EE, et al (2022) A randomized placebo-controlled clinical trial for pharmacological activation of BCAA catabolism in patients with type 2 diabetes. Nat Commun. 13(1):3508. https://doi.org/10.1038/s41467-022-31249-9

    Article  Google Scholar 

  39. Low S et al (2022) Amino acid profile of skeletal muscle loss in type 2 diabetes: results from a 7-year longitudinal study in Asians. Diabetes Res Clin Pract 186:109803. https://doi.org/10.1016/J.DIABRES.2022.109803

    Article  CAS  Google Scholar 

  40. Mari A et al (2011) Influence of hyperinsulinemia and insulin resistance on in vivo β-cell function: their role in human β-cell dysfunction. Diabetes 60(12):3141. https://doi.org/10.2337/DB11-0827

    Article  CAS  Google Scholar 

  41. Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60(4):1111. https://doi.org/10.2337/DB10-1178

    Article  CAS  Google Scholar 

  42. Eckardt K, Görgens SW, Raschke S, Eckel J (2014) Myokines in insulin resistance and type 2 diabetes. Diabetologia 57(6):1087–1099. https://doi.org/10.1007/s00125-014-3224-x

  43. Cheng X, Zhu B, Jiang F, Fan H (2011) Serum FGF-21 levels in type 2 diabetic patients. Endocr Res 36(4):142–148. https://doi.org/10.3109/07435800.2011.558550

    Article  CAS  Google Scholar 

  44. Bianchi C et al (2022) MG53 marks poor beta cell performance and predicts onset of type 2 diabetes in subjects with different degrees of glucose tolerance. Diabetes Metab 48(2):101292. https://doi.org/10.1016/J.DIABET.2021.101292

    Article  CAS  Google Scholar 

  45. Park K, Ahn CW, Park JS, Kim Y, Nam JS, Yan LJ (2020) Circulating myokine levels in different stages of glucose intolerance. Medicine. 99(8):e19235. https://doi.org/10.1097/MD.0000000000019235

    Article  Google Scholar 

  46. Slattery MJ, Bredella MA, Thakur H, Torriani M, Misra M (2014) Insulin resistance and impaired mitochondrial function in obese adolescent girls. Metab Syndr Relat Disord 12(1):56. https://doi.org/10.1089/MET.2013.0100

    Article  CAS  Google Scholar 

  47. Fazzini F et al (2021) Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med 290(1):190. https://doi.org/10.1111/JOIM.13242

    Article  CAS  Google Scholar 

  48. DeBarmore B et al (2020) Mitochondrial DNA copy number and diabetes: the Atherosclerosis Risk in Communities (ARIC) study. BMJ Open Diabetes Res Care. 8(1):e001204. https://doi.org/10.1136/BMJDRC-2020-001204

    Article  Google Scholar 

  49. Schrauwen-Hinderling VB et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50(1):113–120. https://doi.org/10.1007/S00125-006-0475-1

    Article  CAS  Google Scholar 

  50. Nair KS et al (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57(5):1166–1175. https://doi.org/10.2337/db07-1556

    Article  CAS  Google Scholar 

  51. Axelrod CL et al (2021) Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans. Metabolism 121:154803. https://doi.org/10.1016/j.metabol.2021.154803

    Article  CAS  Google Scholar 

  52. Zhang Z, Cui D, Zhang T, Sun Y, Ding S (2020) Swimming differentially affects T2DM-induced skeletal muscle ER stress and mitochondrial dysfunction related to MAM. Diabetes Metab Syndr Obes 13:1417–1428. https://doi.org/10.2147/DMSO.S243024

    Article  CAS  Google Scholar 

  53. Albers PH et al (2015) Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64(2):485–497. https://doi.org/10.2337/DB14-0590

    Article  CAS  Google Scholar 

  54. Oberbach A et al (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29(4):895–900. https://doi.org/10.2337/DIACARE.29.04.06.DC05-1854

    Article  CAS  Google Scholar 

  55. Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50(6):1324–1329. https://doi.org/10.2337/DIABETES.50.6.1324

    Article  CAS  Google Scholar 

  56. Miele C et al (2003) Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. J Biol Chem 278(48):47376–47387. https://doi.org/10.1074/JBC.M301088200

    Article  CAS  Google Scholar 

  57. Trierweiler H, Kisielewicz G, Hoffmann Jonasson T, Rasmussen Petterle R, Aguiar Moreira C, Zeghbi Cochenski Borba V (2018) Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr 10(1):25. https://doi.org/10.1186/s13098-018-0326-5

    Article  CAS  Google Scholar 

  58. Ostler JE et al (2014) Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. Am J Physiol Endocrinol Metab 306(6):E592. https://doi.org/10.1152/AJPENDO.00277.2013

    Article  CAS  Google Scholar 

  59. Jang HC (2019) Diabetes and muscle dysfunction in older adults. Ann Geriatr Med Res 23(4):160. https://doi.org/10.4235/AGMR.19.0038

    Article  Google Scholar 

  60. Hernández EO, Camilo Vanegas O (2015) Diabetic myopathy and mechanisms of disease. Biochem Pharmacol (Los Angel). 4(5):e179. https://doi.org/10.4172/2167-0501.1000E179

    Article  Google Scholar 

  61. Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12(1):330. https://doi.org/10.1038/s41467-020-20123-1

    Article  CAS  Google Scholar 

  62. Filgueiras JR, Sales CP, da Silva IG, Dos Santos CM, Neto ECM, da Rocha RB, Cardoso VS (2022) Morphological and functional changes in skeletal muscle in type 2 diabetes mellitus: A systematic review and meta-analysis. Physiotherapy theory and pract 1–27. Advance online publication. https://doi.org/10.1080/09593985.2022.2057375

  63. Anbalagan VP, Venkataraman V, Pradeepa R, Deepa M, Anjana RM, Mohan V 2013 The prevalence of presarcopenia in Asian Indian individuals with and without type 2 diabetes. Diabetes Technol Ther. 15(9):768–775. https://doi.org/10.1089/dia.2013.0068

  64. Shah S, Sonawane P, Nahar P, Buge K, Vaidya S (2011) Are we ignoring diabetic disability: a cross sectional study of diabetic myopathy. Indian J Med Sci 65(5):186–192. https://doi.org/10.4103/0019-5359.106609

    Article  Google Scholar 

  65. Rajput R, Garg R, Rajput M, Rani M, Darshan An V (2021) Body composition and handgrip strength in patients with prediabetes: a case-control study from Haryana, North India. Diabetes Metab Syndr 15(3):823–827. https://doi.org/10.1016/J.DSX.2021.03.036

    Article  CAS  Google Scholar 

  66. Kaur P, Bansal R, Bhargava B, Mishra S, Gill H, Mithal A (2021) Decreased handgrip strength in patients with type 2 diabetes: a cross-sectional study in a tertiary care hospital in north India. Diabetes Metab Syndr 15(1):325–329. https://doi.org/10.1016/J.DSX.2021.01.007

    Article  CAS  Google Scholar 

  67. Sambashivaiah S, Harridge SDR, Sharma N, Selvam S, Rohatgi P, Kurpad AV (2019) Asian Indians with prediabetes have similar skeletal muscle mass and function to those with type 2 diabetes. Front Nutr. 6:179. https://doi.org/10.3389/FNUT.2019.00179

    Article  Google Scholar 

  68. Matsushita J et al (2022) Effect of exercise instructions with ambulatory accelerometer in Japanese patients with type 2 diabetes: a randomized control trial. Front Endocrinol (Lausanne) 13:949762. https://doi.org/10.3389/FENDO.2022.949762

    Article  Google Scholar 

  69. Stanford KI, Goodyear LJ (2014) Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38(4):308. https://doi.org/10.1152/ADVAN.00080.2014

    Article  Google Scholar 

  70. Wallberg-Henriksson H, Holloszy JO (1984) Contractile activity increases glucose uptake by muscle in severely diabetic rats. J Appl Physiol Respir Environ Exerc Physiol. 57(4):1045–1049. https://doi.org/10.1152/jappl.1984.57.4.1045

  71. Wojtaszewski JFP et al (1999) Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Investig 104(9):1257. https://doi.org/10.1172/JCI7961

    Article  CAS  Google Scholar 

  72. Verbrugge SAJ et al (2022) Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. J Cell Biochem 123(2):202–214. https://doi.org/10.1002/JCB.30179

    Article  CAS  Google Scholar 

  73. Rahmati M, Taherabadi SJ (2021) The effects of exercise training on Kinesin and GAP-43 expression in skeletal muscle fibers of STZ-induced diabetic rats. Sci Rep. 11(1):9535. https://doi.org/10.1038/S41598-021-89106-6

    Article  Google Scholar 

  74. Paquin J, J-c L, Brochu M, Dionne IJ (2021) Exercising for insulin sensitivity—is there a mechanistic relationship with quantitative changes in skeletal muscle mass? Front Physiol 12:656909. https://doi.org/10.3389/fphys.2021.656909

    Article  Google Scholar 

  75. Kim J-W, Ko Y-C, Seo T-B, Kim Y-P (2018) Effect of circuit training on body composition, physical fitness, and metabolic syndrome risk factors in obese female college students. J Exerc Rehabil 14(3):460–465. https://doi.org/10.12965/jer.1836194.097

    Article  Google Scholar 

  76. Kolahdouzi S et al (2019) Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men. Physiol Behav 205:15–21. https://doi.org/10.1016/j.physbeh.2018.11.033

    Article  CAS  Google Scholar 

  77. Carey AL et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697. https://doi.org/10.2337/db05-1404

    Article  CAS  Google Scholar 

  78. Sheng CY, Son YH, Jang J, Park S-J (2022) In vitro skeletal muscle models for type 2 diabetes. Biophys Rev 3(3):031306. https://doi.org/10.1063/5.0096420

    Article  CAS  Google Scholar 

  79. Little JP et al (2011) Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol 111(6):1554–1560. https://doi.org/10.1152/JAPPLPHYSIOL.00921.2011

    Article  CAS  Google Scholar 

  80. Meex RCR et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59(3):572. https://doi.org/10.2337/DB09-1322

    Article  CAS  Google Scholar 

  81. Wang H, Arias EB, Yu CS, Verkerke ARP, Cartee GD (2017) Effects of calorie restriction and fiber type on glucose uptake and abundance of electron transport chain and oxidative phosphorylation proteins in single fibers from old rats. J Gerontol Ser A 72(12):1638–1646. https://doi.org/10.1093/gerona/glx099

    Article  CAS  Google Scholar 

  82. Redman LM, Martin CK, Williamson DA, Ravussin E (2008) Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes. Physiol Behav 94(5):643. https://doi.org/10.1016/J.PHYSBEH.2008.04.017

    Article  CAS  Google Scholar 

  83. Magkos F (2022) Is calorie restriction beneficial for normal-weight individuals? A narrative review of the effects of weight loss in the presence and absence of obesity. Nutr Rev 80(7):1811–1825. https://doi.org/10.1093/NUTRIT/NUAC006

    Article  Google Scholar 

  84. Zhang X et al (2021) Impacts of selected dietary nutrient intakes on skeletal muscle insulin sensitivity and applications to early prevention of type 2 diabetes. Adv Nutr 12(4):1305. https://doi.org/10.1093/ADVANCES/NMAA161

    Article  Google Scholar 

  85. Wu Y et al (2016) Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem 34:126–135. https://doi.org/10.1016/J.JNUTBIO.2016.05.008

    Article  Google Scholar 

  86. Talaei A, Mohamadi M, Adgi Z (2013) The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol Metab Syndr 5(1):1–5. https://doi.org/10.1186/1758-5996-5-8/COMMENTS

    Article  Google Scholar 

  87. Sung C-C, Liao M-T, Lu K-C, Wu C-C (2012) Role of vitamin D in insulin resistance. J Biomed Biotechnol 2012:1–11. https://doi.org/10.1155/2012/634195

    Article  CAS  Google Scholar 

  88. Lemieux P et al (2019) Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: a randomised, placebo-controlled trial. Eur J Endocrinol 181(3):287–299. https://doi.org/10.1530/EJE-19-0156

    Article  CAS  Google Scholar 

  89. Valdes-Ramos R, Laura G-L, Elina M-C, Donaji B-A (2015) Vitamins and type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 15(1):54–63. https://doi.org/10.2174/1871530314666141111103217

    Article  CAS  Google Scholar 

  90. Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163(1–2):94–112. https://doi.org/10.1016/j.cbi.2006.04.014

    Article  CAS  Google Scholar 

  91. Alvarez M, Sierra OR, Saavedra G, Moreno S (2019) Vitamin B12 deficiency and diabetic neuropathy in patients taking metformin: a cross-sectional study. Endocr Connect 8(10):1324–1329. https://doi.org/10.1530/EC-19-0382

    Article  CAS  Google Scholar 

  92. Kibirige D, Mwebaze R (2013) Vitamin B12 deficiency among patients with diabetes mellitus: is routine screening and supplementation justified? J Diabetes Metab Disord 12(1):17. https://doi.org/10.1186/2251-6581-12-17

    Article  CAS  Google Scholar 

  93. Didangelos T et al (2021) Vitamin B12 supplementation in diabetic neuropathy: a 1-year, randomized, double-blind, placebo-controlled trial. Nutrients 13(2):395. https://doi.org/10.3390/nu13020395

    Article  CAS  Google Scholar 

  94. Bhati P, Singla D, Masood S, Hussain ME (2021) Type 2 diabetes mellitus patients manifest greater muscle fatigability than healthy individuals during dynamic fatigue protocol. J Manip Physiol Ther 44(3):205–220. https://doi.org/10.1016/J.JMPT.2019.10.015

    Article  Google Scholar 

  95. Tan HC et al (2018) Comprehensive assessment of insulin resistance in non-obese Asian Indian and Chinese men. J Diabetes Investig 9(6):1296–1303. https://doi.org/10.1111/JDI.12844

    Article  CAS  Google Scholar 

  96. Misra A et al (2008) Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and body composition in Asian Indians with type 2 diabetes. Diabetes Care 31(7):1282–1287. https://doi.org/10.2337/DC07-2316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualized the idea for the review. RB and SB conducted the literature search. All authors contributed to drafting the manuscript. SS and AVK critically revised the drafts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sucharita Sambashivaiah.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambashivaiah, S., Bhadra, R., Bhattacharya, S. et al. Role of Skeletal Muscle in the Pathogenesis and Management of Type 2 Diabetes: A Special Focus on Asian Indians. J Indian Inst Sci 103, 71–89 (2023). https://doi.org/10.1007/s41745-022-00349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00349-2

Keywords

Navigation