Skip to main content

Advertisement

Log in

Geoenvironmental Issues in High-Food-Waste-Content Municipal Solid Waste Landfills

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The amount of municipal solid waste (MSW) has increased significantly in developing countries. Landfilling is the commonly used treatment for the disposal of MSW. The MSW contains more food waste in developing countries than in developed countries. This work analyzed the degradable components of MSW with different food contents. A theoretical model was introduced to analyze the coupled hydro-mechanical-chemical interactions in the landfilled MSW. The impacts of the degradation on the properties of high-food-waste-content MSW were reviewed, including the compression behavior, strength parameters, and hydraulic conductivity. The major cause of geoenvironmental issues in high-food-waste-content landfills are rapid leachate and landfill gas generation. A practical model for analyzing leachates and gas production was presented. Landfills in China were used as an example to describe engineering measures for leachate drainage and landfill gas collection. These methods proved successful in solving geoenvironmental issues of landfills with high leachate levels. The experiences are useful for engineers who face similar issues with high-food-waste-content landfills in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Similar content being viewed by others

References

  1. Yang HY, Wu YH (2009) A study and application of combination forecast model in waste production. J Beijing Inst Technol (Social Sciences Edition) 11(2):54–57

    Google Scholar 

  2. Zhan LT, Chen YM, Wilson GW, Fredlund DG (2011) Waste geotechnics-characteristics of municipal solid wastes and landfill disposal in China. Geotech News 29(3):29

    Google Scholar 

  3. El-Fadel M, Findikakis AN, Leckie JO (1996) Numerical modelling of generation and transport of gas and heat in landfills I. Model formulation. Waste Manage Res 14(5):483–504. https://doi.org/10.1177/0734242X9601400506

    Article  CAS  Google Scholar 

  4. Reichel T, Ivanova LK, Beaven RP, Haarstrick A (2007) Modeling decomposition of MSW in a consolidating anaerobic reactor. Environ Eng Sci 24(8):1072–1083. https://doi.org/10.1089/ees.2006.0230

    Article  CAS  Google Scholar 

  5. Zheng W, Phoungthong K, Lü F, Shao LM, He PJ (2013) Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manage 33(12):2632–2640. https://doi.org/10.1016/j.wasman.2013.08.015

    Article  CAS  Google Scholar 

  6. Barlaz MA (1998) Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Global Biogeochem Cycles 12(2):373–380. https://doi.org/10.1029/98GB00350

    Article  CAS  Google Scholar 

  7. He PJ, Feng SW, Shao LM (2003) Municipal solid waste management. Science Press

    Google Scholar 

  8. Chen Y, Guo R, Li Y-C, Liu H, Zhan TL (2016) A degradation model for high kitchen waste content municipal solid waste. Waste Manage 58:376–385. https://doi.org/10.1016/j.wasman.2016.09.005

    Article  CAS  Google Scholar 

  9. McDougall J (2007) A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput Geotech 34(4):229–246. https://doi.org/10.1016/j.compgeo.2007.02.004

    Article  Google Scholar 

  10. White JK, Beaven RP (2013) Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Manage 33(10):1969–1981. https://doi.org/10.1016/j.wasman.2012.12.006

    Article  CAS  Google Scholar 

  11. Chen YM, Xu WJ, Ling DS, Zhan LT, Gao W (2020) A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste. Comput Geotech 118:103341. https://doi.org/10.1016/j.compgeo.2019.103341

    Article  Google Scholar 

  12. Liu C, Chen R, Chen K (2006) Unsaturated consolidation theory for the prediction of long-term municipal solid waste landfill settlement. Waste Manage Res 24(1):80–91. https://doi.org/10.1177/0734242X06062579

    Article  Google Scholar 

  13. Durmusoglu E, Corapcioglu MY, Tuncay K (2005) Landfill settlement with decomposition and gas generation. J Environ Eng 131(9):1311–1321. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1311)

    Article  CAS  Google Scholar 

  14. Hettiarachchi CH, Meegoda JN, Tavantzis J, Hettiaratchi P (2007) Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills. J Hazard Mater 139(3):514–522. https://doi.org/10.1016/j.jhazmat.2006.02.067

    Article  CAS  Google Scholar 

  15. Hettiarachchi H, Meegoda J, Hettiaratchi P (2009) Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Manage 29(3):1018–1025. https://doi.org/10.1016/j.wasman.2008.08.018

    Article  CAS  Google Scholar 

  16. Reddy KR, Kumar G, Giri RK (2017) Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills. Waste Manage 63:143–160. https://doi.org/10.1016/j.wasman.2016.12.040

    Article  CAS  Google Scholar 

  17. Reddy KR, Kumar G, Giri RK, Basha BM (2018) Reliability assessment of bioreactor landfills using Monte Carlo simulation and coupled hydro-bio-mechanical model. Waste Manage 72:329–338. https://doi.org/10.1016/j.wasman.2017.11.010

    Article  Google Scholar 

  18. Reddy KR, Kumar G, Giri RK (2018) Modeling coupled hydro-bio-mechanical processes in bioreactor landfills: framework and validation. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001164

    Article  Google Scholar 

  19. Reddy KR, Kumar G, Giri RK (2018) System effects on bioreactor landfill performance based on coupled hydro-bio-mechanical modeling. J Hazardous Toxic Radioactive Waste. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000379

    Article  Google Scholar 

  20. Feng S, Fu W, Zhou A, Lyu F (2019) A coupled hydro-mechanical-biodegradation model for municipal solid waste in leachate recirculation. Waste Manage 98:81–91. https://doi.org/10.1016/j.wasman.2019.08.016

    Article  CAS  Google Scholar 

  21. Bente S, Krase V, Kowalsky U, Dinkler D (2017) Model for degradation-induced settlements as part of a coupled landfill model. Int J Numer Anal Meth Geomech 41(12):1390–1410. https://doi.org/10.1002/nag.2687

    Article  Google Scholar 

  22. White JK, Nayagum D, Beaven RP (2014) A multi-component two-phase flow algorithm for use in landfill processes modelling. Waste Manage 34(9):1644–1656. https://doi.org/10.1016/j.wasman.2014.05.005

    Article  CAS  Google Scholar 

  23. Ricken T, Ustohalova V (2005) Modeling of thermal mass transfer in porous media with applications to the organic phase transition in landfills. Comput Mater Sci 32(3–4):498–508. https://doi.org/10.1016/j.commatsci.2004.09.015

    Article  CAS  Google Scholar 

  24. Kindlein J, Dinkler D, Ahrens H (2006) Numerical modelling of multiphase flow and transport processes in landfills. Waste Manage Res 24(4):376–387. https://doi.org/10.1177/0734242X06065506

    Article  CAS  Google Scholar 

  25. Yu L, Batlle F, Lloret A (2010) A coupled model for prediction of settlement and gas flow in MSW landfills. Int J Numer Anal Meth Geomech 34(11):1169–1190. https://doi.org/10.1002/nag.856

    Article  Google Scholar 

  26. Kumar G, Reddy KR, McDougall J (2020) Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Comput Geotech 128:103836. https://doi.org/10.1016/j.compgeo.2020.103836

    Article  Google Scholar 

  27. Hubert J, Liu XF, Collin F (2016) Numerical modeling of the long term behavior of Municipal Solid Waste in a bioreactor landfill. Comput Geotech 72:152–170. https://doi.org/10.1016/j.compgeo.2015.10.007

    Article  Google Scholar 

  28. Li K, Chen YM, Xu WJ, Zhan LT, Ling DS, Ke H, Li JL (2021) A thermo-hydro-mechanical-biochemical coupled model for landfilled municipal solid waste. Comput Geotech 134(January):104090. https://doi.org/10.1016/j.compgeo.2021.104090

    Article  Google Scholar 

  29. Lu S, Feng S, Zheng Q, Bai Z (2020) A multi-phase, multi-component model for coupled processes in anaerobic landfills: theory, implementation and validation. Géotechnique. https://doi.org/10.1680/jgeot.20.P.002

    Article  Google Scholar 

  30. Park HI, Lee SR (1997) Long-term settlement behaviour of landfills with refuse decomposition. J Solid Waste Technol Manage 24(4):159–165

    CAS  Google Scholar 

  31. Hossain MS, Gabr MA, Haque MA (2008) Deformation of MSW bioreactor landfills: properties and analysis approach. In GeoCongress 2008 (pp. 216–223). Reston: American Society of Civil Engineers. https://doi.org/10.1061/40970(309)27

  32. Chen YM, Zhan LT, Li YC (2010) Development of leachate mounds and control of leachate-related failures at MSW landfills in humid regions. In Proceedings of the 6th International Congress on Environmental Geotechnics (pp. 76–98). New Delhi

  33. Chen Y, Ke H, Fredlund DG, Zhan L, Xie Y (2010) Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J Geotech Geoenviron Eng 136(5):706–717. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000273

    Article  CAS  Google Scholar 

  34. Chen Y, Zhan L, Gao W (2019) Waste mechanics and sustainable landfilling technology: comparison between HFWC and LFWC MSWs. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. ICEG 2018. Environmental Science and Engineering. Springer: Singapore. https://doi.org/10.1007/978-981-13-2221-1_1

  35. Sr Leonard ML, Jr Floom KJ, Brown S (2000) Estimating method and use of landfill settlement. In Environmental geotechnics (pp. 1–15). Reston: American Society of Civil Engineers. https://doi.org/10.1061/40519(293)1

  36. Ling HI, Leshchinsky D, Mohri Y, Kawabata T (1998) Estimation of municipal solid waste landfill settlement. J Geotech Geoenviron Eng 124(1):21–28. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(21)

    Article  Google Scholar 

  37. Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotech Geoenviron Eng 129(4):372–378. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(372)

    Article  Google Scholar 

  38. Park HI, Lee SR (2002) Long-term settlement behaviour of MSW landfills with various fill ages. Waste Manage Res 20(3):259–268. https://doi.org/10.1177/0734242X0202000307

    Article  CAS  Google Scholar 

  39. Chen YM, Zhan TLT, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manage 29(1):86–95. https://doi.org/10.1016/j.wasman.2008.02.024

    Article  Google Scholar 

  40. Gabr MA, Hossain MS, Barlaz MA (2007) Shear strength parameters of municipal solid waste with leachate recirculation. J Geotech Geoenviron Eng 133(4):478–484. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(478)

    Article  CAS  Google Scholar 

  41. Harris J, Shafer A, DeGroff W, Hater G, Gabr M, Barlaz M (2006) Shear strength of degraded reconsitituted municipal solid waste. Geotech Test J 29(2):14089. https://doi.org/10.1520/GTJ14089

    Article  Google Scholar 

  42. Jessberger HL (1994) Geotechnical aspects of landfill design and construction. Part 2: material parameters and test methods. (Second of A Series of Three Papers from The Author’s British Geotechnical Society Touring Lecture In 1993). Proc Inst Civil Eng Geotech Eng 107(2):105–113. https://doi.org/10.1680/igeng.1994.26378

    Article  Google Scholar 

  43. Landva AO, Clark JI (1990) Geotechnics of waste fill. In Geotechnics of waste fills—Theory and practice. ASTM

  44. Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, do Nascimento JCF (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manage 30(12):2579–2591. https://doi.org/10.1016/j.wasman.2010.07.019

    Article  Google Scholar 

  45. Pelkey S, Valsangkar A, Landva A (2001) Shear displacement dependent strength of municipal solid waste and its major constituent. Geotech Test J 24(4):381. https://doi.org/10.1520/GTJ11135J

    Article  Google Scholar 

  46. Reddy KR, Gangathulasi J, Parakalla NS, Hettiarachchi H, Bogner JE, Lagier T (2009) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manage Res 27(6):578–587. https://doi.org/10.1177/0734242X09103825

    Article  CAS  Google Scholar 

  47. Zhan TLT, Chen YM, Ling WA (2008) Shear strength characterization of municipal solid waste at the Suzhou landfill China. Eng Geol 97(3–4):97–111. https://doi.org/10.1016/j.enggeo.2007.11.006

    Article  Google Scholar 

  48. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manage 31(11):2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002

    Article  CAS  Google Scholar 

  49. Yang QF (2016) Laboratory research on soil-water characteristic curve of municipal sol-id waste under bio-mechanical effect. Zhejiang University

  50. Wang WF (2012) Hydraulic conductivity of municipal solid waste with different age. Zhejiang University

  51. Hossain MS, Penmethsa KK, Hoyos L (2009) Permeability of municipal solid waste in bioreactor landfill with degradation. Geotech Geol Eng 27(1):43–51. https://doi.org/10.1007/s10706-008-9210-7

    Article  Google Scholar 

  52. Chen YM, Zhan LT, Li YC (2014) Biochemical, hydraulic and mechanical behaviours of landfills with high-kitchen-waste-content MSW. In The 7th international congress on environmental geotechnics (pp. 232–259). Melbourne

  53. Tong Zhan TL, Xu XB, Chen YM, Ma XF, Lan JW (2015) Dependence of gas collection efficiency on leachate level at wet municipal solid waste landfills and its improvement methods in China. J Geotech Geoenviron Eng 141(4):04015002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001271

    Article  CAS  Google Scholar 

  54. Blight G (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manage Res 26(5):448–463. https://doi.org/10.1177/0734242X07087975

    Article  Google Scholar 

  55. Koerner R, Soong T-Y (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18(5):293–309. https://doi.org/10.1016/S0266-1144(99)00034-5

    Article  Google Scholar 

  56. Rowe RK (1998) From the past to the future of landfill engineering through case histories. In International Conference on Case Histories in Geotechnical Engineering. Missouri

  57. Xie H, Chen Y, Lou Z (2010) An analytical solution to contaminant transport through composite liners with geomembrane defects. Sci China Technol Sci 53(5):1424–1433. https://doi.org/10.1007/s11431-010-0111-7

    Article  CAS  Google Scholar 

  58. El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manage 50(1):1–25. https://doi.org/10.1006/jema.1995.0131

    Article  Google Scholar 

  59. Townsend TG, Wise WR, Jain P (2005) One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. J Environ Eng 131(12):1716–1723. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:12(1716)

    Article  CAS  Google Scholar 

  60. Brune M, Ramke HG, Collins HJ, Hanert HH (1991) Incrustation processes in drainage systems of sanitary landfills. In Proceedings of the third International Symposium on Sanitary Landfills. Sardinia

  61. Koerner RM, Daniel DE (1997) Final covers for solid waste landfills and abandoned dumps. Thomas Telford Ltd. https://doi.org/10.1680/fcfswlaad.9780784402610

    Article  Google Scholar 

  62. Qian X, Koerner RM, Gray DH (2002) Geotechnical aspects of landfill design and construction. Pearson

  63. Garciadecortazar A, Monzon I (2007) MODUELO 2: a new version of an integrated simulation model for municipal solid waste landfills. Environ Model Softw 22(1):59–72. https://doi.org/10.1016/j.envsoft.2005.11.003

    Article  Google Scholar 

  64. Berger K, Christensen TH, Cossu R, Stegmann R (2003) Validation and enhancement of the HELP model to simulate the water balance of surface covers. In Proceedings Sardinia, 9th International Landfill Symposium (pp. 294–296). Cagliari: CISA Publisher

  65. Hu J, Ke H, Chen ZY, Lan JW, Zhan LT, Chen YM (2019) Installation and performance of horizontal wells for leachate level control in Tianziling MSW Landfill, China. In: Zhan L, Chen Y, Bouazza A (eds). Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2. ICEG 2018. Environmental Science and Engineering. Springer: Singapore. https://doi.org/10.1007/978-981-13-2224-2_15

  66. Hu J, Ke H, Lan J-W, Chen Y-M, Meng M (2020) A dual-porosity model for coupled leachate and gas flow to vertical wells in municipal solid waste landfills. Géotechnique 70(5):406–420. https://doi.org/10.1680/jgeot.18.P.193

    Article  Google Scholar 

  67. Hu J, Ke H, Zhan LT, Chen ZY, Lan JW, Powrie W, Chen YM (2020) Installation and performance of horizontal wells for dewatering at municipal solid waste landfills in China. Waste Manage 103:159–168. https://doi.org/10.1016/j.wasman.2019.12.035

    Article  Google Scholar 

  68. Ma P, Ke H, Lan J, Chen Y, He H (2019) Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China. Eng Geol 250:21–33. https://doi.org/10.1016/j.enggeo.2019.01.004

    Article  Google Scholar 

  69. Zhan L-T, Xu H, Chen Y-M, Lan J-W, Lin W-A, Xu X-B, He P-J (2017) Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: liquid-gas interactions observed from a large-scale experiment. Waste Manage 68:307–318. https://doi.org/10.1016/j.wasman.2017.06.023

    Article  CAS  Google Scholar 

  70. EPA (2005) First-order kinetic gas generation model parameter for wet landfills. EPA-600/R-05/072

  71. IPCC (2006) Guidelines for National Greenhouse Gas Inventories

  72. Amini HR, Reinhart DR, Mackie KR (2012) Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manage 32(2):305–316. https://doi.org/10.1016/j.wasman.2011.09.021

    Article  CAS  Google Scholar 

  73. la Cruz FBD, Barlaz MA (2010) Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. Environ Sci Technol 44(12):4722–4728. https://doi.org/10.1021/es100240r

    Article  CAS  Google Scholar 

  74. Thompson S, Sawyer J, Bonam R, Valdivia JE (2009) Building a better methane generation model: validating models with methane recovery rates from 35 Canadian landfills. Waste Manage 29(7):2085–2091. https://doi.org/10.1016/j.wasman.2009.02.004

    Article  CAS  Google Scholar 

  75. Tolaymat TM, Green RB, Hater GR, Barlaz MA, Black P, Bronson D, Powell J (2010) Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors. J Air Waste Manag Assoc 60(1):91–97. https://doi.org/10.3155/1047-3289.60.1.91

    Article  CAS  Google Scholar 

  76. Wang X, Nagpure AS, DeCarolis JF, Barlaz MA (2015) Characterization of uncertainty in estimation of methane collection from select U.S. Landfills. Environ Sci Technol 49(3):1545–1551. https://doi.org/10.1021/es505268x

    Article  CAS  Google Scholar 

  77. Wang X, Nagpure AS, DeCarolis JF, Barlaz MA (2013) Using observed data to improve estimated methane collection from select U.S. Landfills. Environ Sci Technol 47(7):3251–3257. https://doi.org/10.1021/es304565m

    Article  CAS  Google Scholar 

  78. Shah VA (2015) Modeling biodegradation settlement of municipal solid waste (msw) based on measurement of landfill gas and degradable solids in leachate recirculated bioreactors. New Jersey Institute of Technology

Download references

Acknowledgements

The authors acknowledge the financial support from the research Grant (No. 51988101 and 51508504) provided by the National Natural Science Foundation of China.

Funding

National Natural Science Foundation of China, No. 51988101 and 51508504.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YC, WX; Methodology: YC, WX, HK, LZ; Formal analysis and investigation: JH, HL, PM, JL; Writing—original draft preparation: YC, WX, JH, HL, PM; Writing—review and editing: YC, WX; Funding acquisition: YC; Resources: YC, WX; Supervision: YC.

Corresponding author

Correspondence to Wenjie Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Xu, W., Zhan, L. et al. Geoenvironmental Issues in High-Food-Waste-Content Municipal Solid Waste Landfills. J Indian Inst Sci 101, 603–623 (2021). https://doi.org/10.1007/s41745-021-00233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00233-5

Navigation