Skip to main content
Log in

A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The sandwich-type lateral flow assays relying on dual aptamers with high sensitivity and specificity have been broadly explored. However, it is unlikely to match a pair of specific aptamers that can bind a small molecular target (e.g., cocaine) simultaneously due to the steric hindrance. In response, we herein introduced the strategy of “one divides into two” into the construction of sandwich-type lateral flow strip assay (LFSA). Specifically, we split a single cocaine-recognizing aptamer into two segments, either of which was conjugated with gold nanoparticles (AuNPs) or labeled with biotin, serving as signal probe and capture probe, respectively. Upon the presence of the target molecule, a ternary sandwich complex comprised of the two halves of the aptamer and the target formed. Such sandwich-type LFSA exhibited an excellent nonlinear logarithmic response in the range from 10 μmol/L to 5 mmol/L with R2 = 0.9994. The sensitive on-site detection of cocaine in artificial biological samples including urine and sweat was achieved within 15 min, with the visual limit of detection as low as 50 μmol/L for urine and 200 μmol/L for sweat, and the recovery rates of 83.6–107.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferreira CES, Guerra JCC, Slhessarenko N, Scartezini M, Franca CN, Colombini MP, Berlitz F, Machado AMO, Campana GA, Faulhaber ACL, Galoro CA, Dias CM, Shcolnik W, Martino MDV, Cesar KR, Sumita NM, Mendes ME, Faulhaber MHW, Pinho JRR, Barbosa IV, Batista MC, Khawali C, Pariz VM, Andriolo A. Point-of-care testing: general aspects. Clin Lab. 2018;64(1):1–9.

    PubMed  Google Scholar 

  2. Goble JA, Rocafort PT. Point-of-care testing. J Pharm Pract. 2017;30(2):229–37.

    Article  Google Scholar 

  3. Cook MJ, Puri BK. Commercial test kits for detection of Lyme borreliosis: a meta-analysis of test accuracy. Int J Gen Med. 2016;9:427–40.

    Article  CAS  Google Scholar 

  4. Kaur N, Toley BJ. Paper-based nucleic acid amplification tests for point-of-care diagnostics. Analyst. 2018;143(10):2213–34.

    Article  CAS  Google Scholar 

  5. Kim J, Campbell AS, de Avila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37(4):389–406.

    Article  CAS  Google Scholar 

  6. Li S, Ma Z, Cao ZL, Pan LJ, Shi Y. Advanced wearable microfluidic sensors for healthcare monitoring. Small. 2020;16(9): e1903822.

    Article  Google Scholar 

  7. Liu JJ, Geng ZX, Fan ZY, Liu J, Chen HD. Point-of-care testing based on smartphone: the current state-of-the-art (2017–2018). Biosens Bioelectron. 2019;132(1):17–37.

    Article  CAS  Google Scholar 

  8. He S, Dong H, Hao Y, Zhang Y, Xu M. Quantifying hypochlorous acid concentration in environmental water using smartphone colorimetry. J Anal Test. 2021;5(2):360–9.

    Article  Google Scholar 

  9. Zhan L, Li C, Gao P, Huang C. AuNPs/graphene hybrids-based enzyme-free plasmonic immunoassay for respiratory syncytial virus detection. J Anal Test. 2021;5(3):203–9.

    Article  Google Scholar 

  10. Wu YH, Zhou YF, Leng YK, Lai WH, Huang XL, Xiong YH. Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens Bioelectron. 2020;157(1): 112168.

    Article  CAS  Google Scholar 

  11. Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. Lab Chip. 2019;19(15):2486–99.

    Article  CAS  Google Scholar 

  12. Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors-Basel. 2021;21(15):5185.

    Article  Google Scholar 

  13. Kinghorn AB, Fraser LA, Liang SL, Shiu SCC, Tanner JA. Aptamer bioinformatics. Int J Mol Sci. 2017;18(12):2516.

    Article  Google Scholar 

  14. Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941.

    Article  Google Scholar 

  15. Sun HG, Zu YL. A highlight of recent advances in aptamer technology and its application. Molecules. 2015;20(7):11959–80.

    Article  CAS  Google Scholar 

  16. Zhou JH, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

    Article  CAS  Google Scholar 

  17. Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15.

    Article  CAS  Google Scholar 

  18. Jing L, Qin MW, Zhang XM, Song YZ, Zhang JY, Xia XS, Gao K, Han QQ. A novel borax-specific ssDNA aptamer screened by high-throughput SELEX and its colorimetric assay with aggregation of AuNPs. J Food Compos Anal. 2021;101(2): 103947.

    Article  CAS  Google Scholar 

  19. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6):1141–61.

    Article  CAS  Google Scholar 

  20. Chen AL, Yang SM. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015;71(15):230–42.

    Article  CAS  Google Scholar 

  21. Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu LM, Rivas L, Alvarez-Diduk R, Nguyen EP, Cinti S, Quesada-Gonzalez D, Merkoci A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc. 2020;15(12):3788–816.

    Article  CAS  Google Scholar 

  22. Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta. 2020;210(1): 120616.

    Article  CAS  Google Scholar 

  23. Liu X, Bu S, Wei H, Wang Z, Yu S, Li Z, Hao Z, He X, Wan J. Visual assay of Escherichia coli O157:H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. Anal Methods. 2021;13(30):3379–85.

    Article  CAS  Google Scholar 

  24. Morris FD, Peterson EM, Heemstra JM, Harris JM. Single-molecule kinetic investigation of cocaine-dependent split-aptamer assembly. Anal Chem. 2018;90(21):12964–70.

    Article  CAS  Google Scholar 

  25. Zuo XL, Xiao Y, Plaxco KW. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc. 2009;131(20):6944–5.

    Article  CAS  Google Scholar 

  26. Feng CJ, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron. 2014;59:64–74.

    Article  CAS  Google Scholar 

  27. Jiang BY, Wang M, Chen Y, Xie JQ, Xiang Y. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens Bioelectron. 2012;32(1):305–8.

    Article  CAS  Google Scholar 

  28. Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem. 2001;294(2):126–31.

    Article  CAS  Google Scholar 

  29. Stojanovic MN, de Prada P, Landry DW. Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc. 2000;122(46):11547–8.

    Article  CAS  Google Scholar 

  30. Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001;123(21):4928–31.

    Article  CAS  Google Scholar 

  31. Li M, Zhang J, Jiang J, Zhang J, Gao J, Qiao X. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry. Analyst. 2014;139(7):1687–91.

    Article  CAS  Google Scholar 

  32. Wang L, Musile G, McCord BR. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis. 2018;39(3):470–5.

    Article  CAS  Google Scholar 

  33. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc. 2006;1(1):246–52.

    Article  CAS  Google Scholar 

  34. Basso CR, Crulhas BP, Castro GR, Pedrosa VA. A study of the effects of pH and surfactant addition on gold nanoparticle aggregation. J Nanosci Nanotechnol. 2020;20(9):5458–68.

    Article  CAS  Google Scholar 

  35. Huang XL, Aguilar ZP, Xu HY, Lai WH, Xiong YH. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75(15):166–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22090050, 22122410, 21874121), the National Key Research and Development Program of China (2018YFE0206900), Hubei Provincial Natural Science Foundation of China (2020CFA037), Zhejiang Provincial Natural Science Foundation of China (LD21B050001).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to Shao-Guang Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4590 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Xie, CY., Li, QQ. et al. A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine. J. Anal. Test. 6, 120–128 (2022). https://doi.org/10.1007/s41664-022-00228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00228-w

Keywords

Navigation