Skip to main content
Log in

Single-cell Metabolomics Analysis by Microfluidics and Mass Spectrometry: Recent New Advances

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Metabolomics at the single-cell level can analyze cellular metabolites, study the phenotypic variations in individual cells and reveal phenomena and mechanisms that cannot be observed by analyzing large number of cells. It also provides an efficient way to study the dynamically changing metabolites and intermediates in single living cells. Microfluidics enables high-throughput analysis of single cells without disturbing cell metabolism as much as possible. Mass spectrometry is a promising tool for single-cell metabolomics and its innovation provides rich information of metabolites for single-cell analysis. In this mini-review, the recent new advances of single-cell metabolomics based on microfluidics and mass spectrometry in last five years are reviewed and prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zenobi R. Single-cell metabolomics: analytical and biological perspectives. Science. 2013;342(6163):1243259. https://doi.org/10.1126/science.1243259.

    Article  CAS  PubMed  Google Scholar 

  2. Abouleila Y, Onidani K, Ali A, Shoji H, Kawai T, Lim CT, Kumar V, Okaya S, Kato K, Hiyama E, Yanagida T, Masujima T, Shimizu Y, Honda K. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci. 2019;110(2):697–706. https://doi.org/10.1111/cas.13915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Microfluidic single-cell omics analysis. Small. 2020;16(9):1903905. https://doi.org/10.1002/smll.201903905.

    Article  CAS  Google Scholar 

  4. Liu Y, Chen X, Zhang Y, Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst. 2019;144(3):846–58. https://doi.org/10.1039/c8an01503a.

    Article  CAS  PubMed  Google Scholar 

  5. Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst. 2019;144(3):766–81. https://doi.org/10.1039/c8an01186a.

    Article  CAS  PubMed  Google Scholar 

  6. Steyer DJ, Kennedy RT. High-throughput nanoelectrospray ionization-mass spectrometry analysis of microfluidic droplet samples. Anal Chem. 2019;91(10):6645–51. https://doi.org/10.1021/acs.analchem.9b00571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ngernsutivorakul T, Steyer DJ, Valenta AC, Kennedy RT. In Vivo chemical monitoring at high spatiotemporal resolution using microfabricated sampling probes and droplet-based microfluidics coupled to mass spectrometry. Anal Chem. 2018;90(18):10943–50. https://doi.org/10.1021/acs.analchem.8b02468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip. 2008;8(8):1262–4. https://doi.org/10.1039/b805456h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip. 2012;12(16):2881–7. https://doi.org/10.1039/c2lc00013j.

    Article  CAS  PubMed  Google Scholar 

  10. He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem. 2005;77(6):1539–44. https://doi.org/10.1021/ac0480850.

    Article  CAS  PubMed  Google Scholar 

  11. Jing T, Ramji R, Warkiani ME, Han J, Lim CT, Chen CH. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron. 2015;66:19–23. https://doi.org/10.1016/j.bios.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  12. Yang AH, Soh HT. Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal Chem. 2012;84(24):10756–62. https://doi.org/10.1021/ac3026674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu L, Chen P, Dong YS, Feng XJ, Liu BF. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices. 2013;15(3):553–60. https://doi.org/10.1007/s10544-013-9754-z.

    Article  CAS  PubMed  Google Scholar 

  14. Han SI, Kim HS, Han A. In-droplet cell concentration using dielectrophoresis. Biosens Bioelectron. 2017;97:41–5. https://doi.org/10.1016/j.bios.2017.05.036.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Li N, Lin L, Huang Q, Uchiyama K, Lin J-M. Concentrating single cells in picoliter droplets for phospholipid profiling on a microfluidic system. Small. 2020;16(9):1903402. https://doi.org/10.1002/smll.201903402.

    Article  CAS  Google Scholar 

  16. Feng J, Zhang X, Huang L, Yao H, Yang C, Ma X, Zhang S, Zhang X. Quantitation of glucose-phosphate in single cells by microwell-based nanoliter droplet microextraction and mass spectrometry. Anal Chem. 2019;91(9):5613–20. https://doi.org/10.1021/acs.analchem.8b05226.

    Article  CAS  PubMed  Google Scholar 

  17. Xie W, Gao D, Jin F, Jiang Y, Liu H. Study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2015;87(14):7052–9. https://doi.org/10.1021/acs.analchem.5b00010.

    Article  CAS  PubMed  Google Scholar 

  18. Swennenhuis JF, Tibbe AGJ, Stevens M, Katika MR, van Dalum J, Tong HD, van Rijn CJM, Terstappen L. Self-seeding microwell chip for the isolation and characterization of single cells. Lab Chip. 2015;15(14):3039–46. https://doi.org/10.1039/c5lc00304k.

    Article  CAS  PubMed  Google Scholar 

  19. Huang L, Chen Y, Chen YF, Wu HK. Centrifugation-assisted single-cell trapping in a truncated cone-shaped microwell array chip for the real-time observation of cellular apoptosis. Anal Chem. 2015;87(24):12169–76. https://doi.org/10.1021/acs.analchem.5b03031.

    Article  CAS  PubMed  Google Scholar 

  20. Haidas D, Bachler S, Kohler M, Blank LM, Zenobi R, Dittrich PS. Microfluidic platform for multimodal analysis of enzyme secretion in nanoliter droplet arrays. Anal Chem. 2019;91(3):2066–73. https://doi.org/10.1021/acs.analchem.8b04506.

    Article  CAS  PubMed  Google Scholar 

  21. Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun HT. Acoustofluidic separation of cells and particles. Microsyst Nanoeng. 2019;5:32. https://doi.org/10.1038/s41378-019-0064-3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. He M, Zhou Y, Cui W, Yang Y, Zhang H, Chen X, Pang W, Duan X. An on-demand femtoliter droplet dispensing system based on a gigahertz acoustic resonator. Lab Chip. 2018;18(17):2540–6. https://doi.org/10.1039/c8lc00540k.

    Article  CAS  PubMed  Google Scholar 

  23. Foresti D, Kroll KT, Amissah R, Sillani F, Homan KA, Poulikakos D, Lewis JA. Acoustophoretic printing. Sci Adv. 2018;4(8):9. https://doi.org/10.1126/sciadv.aat1659.

    Article  CAS  Google Scholar 

  24. Chen F, Zhang Y, Nakagawa Y, Zeng H, Luo C, Nakajima H, Uchiyama K, Lin JM. A piezoelectric drop-on-demand generator for accurate samples in capillary electrophoresis. Talanta. 2013;107:111–7. https://doi.org/10.1016/j.talanta.2012.12.058.

    Article  CAS  PubMed  Google Scholar 

  25. Luo C, Ma Y, Li H, Chen F, Uchiyama K, Lin JM. Generation of picoliter droplets of liquid for electrospray ionization with piezoelectric inkjet. J Mass Spectrom. 2013;48(3):321–8. https://doi.org/10.1002/jms.3159.

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Lin L, Zhang J, He Z, Uchiyama K, Lin JM. Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal Chem. 2016;88(8):4354–60. https://doi.org/10.1021/acs.analchem.5b04749.

    Article  CAS  PubMed  Google Scholar 

  27. Mao Y, Pan Y, Li X, Li B, Chu J, Pan T. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip. 2018;18(18):2720–9. https://doi.org/10.1039/c8lc00505b.

    Article  CAS  PubMed  Google Scholar 

  28. Benson BR, Stone HA, Prud'homme RK. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Lab Chip. 2013;13(23):4507–11. https://doi.org/10.1039/c3lc50804h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen R, Liu P, Zhang Y, Yu Z, Chen X, Zhou L, Nie B, Zaczek A, Chen J, Liu J. Sensitive detection of single-cell secreted H2O2 by integrating a microfluidic droplet sensor and Au nanoclusters. Anal Chem. 2018;90(7):4478–84. https://doi.org/10.1021/acs.analchem.7b04798.

    Article  CAS  PubMed  Google Scholar 

  30. Yao H, Zhao H, Zhao X, Pan X, Feng J, Xu F, Zhang S, Zhang X. Label-free mass cytometry for unveiling cellular metabolic heterogeneity. Anal Chem. 2019;91(15):9777–833. https://doi.org/10.1021/acs.analchem.9b01419.

    Article  CAS  PubMed  Google Scholar 

  31. Warkiani ME, Guan GF, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK, Tan DSW, Lim WT, Lee SC, Chen PCY, Lim CT, Han J. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip. 2014;14(1):128–37. https://doi.org/10.1039/c3lc50617g.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Q, Mao S, Khan M, Zhou L, Lin JM. Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry. Chem Commun (Camb). 2018;54(21):2595–8. https://doi.org/10.1039/c7cc09608a.

    Article  CAS  Google Scholar 

  33. Wei X, Zhang X, Guo R, Chen ML, Yang T, Xu ZR, Wang JH. A Spiral-helix (3D) tubing array that ensures ultrahigh-throughput single-cell sampling. Anal Chem. 2019;91(24):15826–32. https://doi.org/10.1021/acs.analchem.9b04122.

    Article  CAS  PubMed  Google Scholar 

  34. Tsuyama N, Mizuno H, Tokunaga E, Masujima T. Live single-cell molecular analysis by video-mass spectrometry. Anal Sci. 2008;24(5):559–61. https://doi.org/10.2116/analsci.24.559.

    Article  CAS  PubMed  Google Scholar 

  35. Masujima T. Live single-cell mass spectrometry. Anal Sci. 2009;25(8):953–60. https://doi.org/10.2116/analsci.25.953.

    Article  CAS  PubMed  Google Scholar 

  36. Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc. 2015;10(9):1445–566. https://doi.org/10.1038/nprot.2015.084.

    Article  CAS  PubMed  Google Scholar 

  37. Huang G, Li G, Cooks RG. Induced nanoelectrospray ionization for matrix-tolerant and high-throughput mass spectrometry. Angew Chem Int Ed Engl. 2011;50(42):9907–10. https://doi.org/10.1002/anie.201103687.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu H, Zou G, Wang N, Zhuang M, Xiong W, Huang G. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci U S A. 2017;114(10):2586–91. https://doi.org/10.1073/pnas.1615557114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu H, Wang N, Yao L, Chen Q, Zhang R, Qian J, Hou Y, Guo W, Fan S, Liu S, Zhao Q, Du F, Zuo X, Guo Y, Xu Y, Li J, Xue T, Zhong K, Song X, Huang G, Xiong W. Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell. 2018;173(7):1716–27.e17. https://doi.org/10.1016/j.cell.2018.04.014.

    Article  CAS  PubMed  Google Scholar 

  40. Wei Z, Xiong X, Guo C, Si X, Zhao Y, He M, Yang C, Xu W, Tang F, Fang X, Zhang S, Zhang X. Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy. Anal Chem. 2015;87(22):11242–8. https://doi.org/10.1021/acs.analchem.5b02115.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XC, Zang Q, Zhao H, Ma X, Pan X, Feng J, Zhang S, Zhang R, Abliz Z, Zhang X. Combination of droplet extraction and Pico-ESI-MS allows the identification of metabolites from single cancer cells. Anal Chem. 2018;90(16):9897–903. https://doi.org/10.1021/acs.analchem.8b02098.

    Article  CAS  PubMed  Google Scholar 

  42. Pan N, Rao W, Kothapalli NR, Liu R, Burgett AW, Yang Z. The single-probe: a miniaturized multifunctional device for single cell mass spectrometry analysis. Anal Chem. 2014;86(19):9376–80. https://doi.org/10.1021/ac5029038.

    Article  CAS  PubMed  Google Scholar 

  43. Sun M, Yang Z. Metabolomic studies of live single cancer stem cells using mass spectrometry. Anal Chem. 2019;91(3):2384–91. https://doi.org/10.1021/acs.analchem.8b05166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urban PL, Schmid T, Amantonico A, Zenobi R. Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem. 2011;83(5):1843–9. https://doi.org/10.1021/ac102702m.

    Article  CAS  PubMed  Google Scholar 

  45. Amantonico A, Urban PL, Fagerer SR, Balabin RM, Zenobi R. Single-Cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal Chem. 2010;82(17):7394–400. https://doi.org/10.1021/ac1015326.

    Article  CAS  PubMed  Google Scholar 

  46. Ibáñez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, Geiger P, Dechant R, Heinemann M, Zenobi R. Mass spectrometry-based metabolomics of single yeast cells. Proc Natl Acad Sci. 2013;110(22):8790–4. https://doi.org/10.1073/pnas.1209302110.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guillaume-Gentil O, Rey T, Kiefer P, Ibáñez AJ, Steinhoff R, Brönnimann R, Dorwling-Carter L, Zambelli T, Zenobi R, Vorholt JA. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy. Anal Chem. 2017;89(9):5017–23. https://doi.org/10.1021/acs.analchem.7b00367.

    Article  CAS  PubMed  Google Scholar 

  48. Walker BN, Razunguzwa T, Powell M, Knochenmuss R, Vertes A. Nanophotonic ion production from silicon microcolumn arrays. Angew Chem Int Ed. 2009;48(9):1669–722. https://doi.org/10.1002/anie.200805114.

    Article  CAS  Google Scholar 

  49. Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser–nanostructure interactions for ion production. Phys Chem Chem Phys. 2012;14(24):8453–71. https://doi.org/10.1039/C2CP00038E.

    Article  CAS  PubMed  Google Scholar 

  50. Morris NJ, Anderson H, Thibeault B, Vertes A, Powell MJ, Razunguzwa TT. Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Adv. 2015;5(88):72051–7. https://doi.org/10.1039/C5RA11875A.

    Article  CAS  Google Scholar 

  51. Walker BN, Stolee JA, Vertes A. Nanophotonic Ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem. 2012;84(18):7756–62. https://doi.org/10.1021/ac301238k.

    Article  CAS  PubMed  Google Scholar 

  52. Walker BN, Antonakos C, Retterer ST, Vertes A. Metabolic differences in microbial cell populations revealed by nanophotonic ionization. Angew Chem Int Ed. 2013;52(13):3650–3. https://doi.org/10.1002/anie.201207348.

    Article  CAS  Google Scholar 

  53. Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew Chem Int Ed. 2016;55(14):4482–6. https://doi.org/10.1002/anie.201511691.

    Article  CAS  Google Scholar 

  54. Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017;14(1):90–6. https://doi.org/10.1038/nmeth.4071.

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Wang Z, Liu F, Cai L, Pan J-B, Li Z, Zhang S, Chen H-Y, Zhang X, Mo Y. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Anal Chem. 2018;90(16):10009–155. https://doi.org/10.1021/acs.analchem.8b02478.

    Article  CAS  PubMed  Google Scholar 

  56. Dueñas ME, Essner JJ, Lee YJ. 3D Maldi Mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish. Sci Rep. 2017;7(1):14946. https://doi.org/10.1038/s41598-017-14949-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nygren H, Malmberg P. High resolution imaging by organic secondary ion mass spectrometry. Trends Biotechnol. 2007;25(11):499–504. https://doi.org/10.1016/j.tibtech.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  58. Kurczy ME, Piehowski PD, Van Bell CT, Heien ML, Winograd N, Ewing AG. Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc Natl Acad Sci USA. 2010;107(7):2751–6. https://doi.org/10.1073/pnas.0908101107.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Piehowski PD, Davey AM, Kurczy ME, Sheets ED, Winograd N, Ewing AG, Heien ML. Time-of-flight secondary ion mass spectrometry imaging of subcellular lipid heterogeneity: poisson counting and spatial resolution. Anal Chem. 2009;81(14):5593–602. https://doi.org/10.1021/ac901065s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, Alexander MR, Dollery CT. Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D Mass spectrometry imaging. Anal Chem. 2015;87(13):6696–702. https://doi.org/10.1021/acs.analchem.5b00842.

    Article  CAS  PubMed  Google Scholar 

  61. Li H-W, Hua X, Long Y-T. Graphene quantum dots enhanced ToF-SIMS for single-cell imaging. Anal Bioanal Chem. 2019;411(18):4025–30. https://doi.org/10.1007/s00216-019-01686-5.

    Article  CAS  PubMed  Google Scholar 

  62. Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36(2):486–511. https://doi.org/10.1111/j.1574-6976.2011.00303.x.

    Article  CAS  PubMed  Google Scholar 

  63. Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, Cassar N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13(3):651–62. https://doi.org/10.1038/s41396-018-0285-8.

    Article  CAS  PubMed  Google Scholar 

  64. Fisher GL, Bruinen AL, Ogrinc Potočnik N, Hammond JS, Bryan SR, Larson PE, Heeren RMA. A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS. Anal Chem. 2016;88(12):6433–40. https://doi.org/10.1021/acs.analchem.6b01022.

    Article  CAS  PubMed  Google Scholar 

  65. Bruinen AL, Fisher GL, Balez R, van der Sar AM, Ooi L, Heeren RMA. Identification and high-resolution imaging of alpha-tocopherol from human cells to whole animals by TOF-SIMS tandem mass spectrometry. J Am Soc Mass Spectrom. 2018;29(8):1571–81. https://doi.org/10.1007/s13361-018-1979-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F, Havelund R, Newman CF, Marshall PS, Arlinghaus H, Alexander MR, West A, Horning S, Niehuis E, Makarov A, Dollery CT, Gilmore IS. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods. 2017;14(12):1175–83. https://doi.org/10.1038/nmeth.4504.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2019YFC1605100) and the Innovation Program (DICP&QIBEBT UN201806) from DICP, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhe Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 181 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, D., Xu, T., Li, H. et al. Single-cell Metabolomics Analysis by Microfluidics and Mass Spectrometry: Recent New Advances. J. Anal. Test. 4, 198–209 (2020). https://doi.org/10.1007/s41664-020-00138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00138-9

Keywords

Navigation