Skip to main content
Log in

Electrochemical Biosensor for Rapid Detection of Viable Bacteria and Antibiotic Screening

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

We have developed a biosensor for the detection of live/viable bacteria based on the response of the conductive polymer 4-(3-pyrrolyl) butyric acid to glucose-induced metabolites. The polymer was electrochemically deposited and then functionalized with lectin through EDC/NHS chemistry to capture cells near the sensor surface and introduce selectivity for analytes. The addition of glucose to a three-electrode electrochemical cell containing 10 mM phosphate buffer and the bacteria-immobilized sensor produced an increase in the potential. When the bound bacteria were treated with antibiotics, the addition of glucose produced a notably reduced signal exhibiting the sensor’s potential to screen for the most effective antibiotic treatment. This biosensor having real-time responses, minimal sample preparation, and the ability to screen antibiotics demonstrates the speed, ease, and suitability essential for application in point-of-care services. The detection range was determined to be 6.0 × 103–9.2 × 107 CFU/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, Griffin PM. Foodborne illness acquired in the united states—major pathogens. Emerg Infect Dis. 2011;17:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sobel JD, Kaye D. Urinary tract infections. In: Mandell GL, Bennett JE, editors. Principles and practice of infectious diseases. 8th ed. Philadelphia: Elsevier Saunders; 2014. p. 886–913.

    Google Scholar 

  3. Heron M. Deaths: leading causes for 2016. National Vital Statistics Reports, vol 67, no 6. Hyattsville, MD: National Center for Health Statistics; 2018.

  4. CDC. Antibiotic resistance threats in the United States. Washington, DC: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2013.

  5. President’s Council of Advisors on Science and Technology (PCAST). Report to the president on combating antibiotic resistance. Washington, DC: PCAST; 2014.

  6. CDC. Antibiotic Use in the United States, 2017: Progress and Opportunities. Washington, DC: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2017. p. 2017.

    Google Scholar 

  7. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8:4469–76.

    Article  CAS  PubMed  Google Scholar 

  8. Jantra J, Kanatharana P, Asawatreratanakul P, Hedström M, Mattiasson B, Thavarungkul P. Real-time label-free affinity biosensors for enumeration of total bacteria based on immobilized concanavalin A. J Environ Sci Health Part A. 2011;46:1450–60.

    Article  CAS  Google Scholar 

  9. Yakovleva ME, Moran AP, Safina GR, Wadström T, Danielsson B. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique. Anal Chim Acta. 2011;694:1–5.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Sudibya HG, Chen P. Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of antibacterial drugs. Biosens Bioelectron. 2011;26:4257–61.

    Article  CAS  PubMed  Google Scholar 

  11. Juneja VK, Cherry JP, Tunick MH. Advances in microbial food safety. Washington, D.C: Oxford University Press; 2006.

    Book  Google Scholar 

  12. Saucedo NM, Mulchandani A. Sensing of biological contaminants: pathogens and toxins. In: Scognamiglio V, Rea G, Arduini F, Palleschi G, editors. Biosensors for sustainable food—new opportunities and technical challenges, vol. 24. Cambridge: Elsevier; 2016. p. 73–89.

    Chapter  Google Scholar 

  13. Amani J, Seyed AM, Abbas AIF. A review approaches to identify enteric bacterial pathogens. Jundishapur J Microbiol. 2015;8(2):e17473

    PubMed  Google Scholar 

  14. CDC Be Antibiotics Aware campaign. https://www.cdc.gov/antibiotic-use/index.html.

  15. CIMIT Initiatives and Awards. https://cimit.org/initiatives.

  16. Ozalp VC, Bayramoglu G, Erdem Z, Arica MY. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal Chim Acta. 2015;853:533–40.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Ye Z, Si C, Ying Y. Monitoring of Escherichia coli O157: H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chem. 2013;136:1303–8.

    Article  CAS  PubMed  Google Scholar 

  18. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE. Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc. 2011;133:7571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Dong X, Liu Y, Li LJ, Chen P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem. 2011;21:12358–62.

    Article  CAS  Google Scholar 

  20. Ramnani P, Saucedo NM, Mulchandani A. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere. 2016;143:85–98.

    Article  CAS  PubMed  Google Scholar 

  21. Sadki S, Schottland P, Brodie N, Sabouraud G. The mechanisms of pyrrole electropolymerization. Chem Soc Rev. 2000;29:283–93.

    Article  Google Scholar 

  22. Wang Y, Ping J, Ye Z, Wu J, Ying Y. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157: H7. Biosens Bioelectron. 2013;49:492–8.

    Article  CAS  PubMed  Google Scholar 

  23. Cella LN, Chen W, Myung NV, Mulchandani A. Single walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. J Am Chem Soc. 2010;132:5024–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perkins DL, Lovell CR, Bronk BV, Setlow B, Setlow P, Myrick ML. Effects of autoclaving on bacterial endospores studied by Fourier transform infrared microspectroscopy. Appl Spectrosc. 2004;58:749–53.

    Article  CAS  PubMed  Google Scholar 

  25. Shirale DJ, Bangar MA, Park M, Yates V, Chen W, Myung NV, Mulchandani A. Label-free chemiresistive immunosensors for viruses. Environ Sci Technol. 2010;44:9030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Durso LM, Smith D, Hutkins RW. Measurements of fitness and competition in commensal Escherichia coli and E. coli O157: H7 strains. Appl Environ Microbiol. 2004;70:6466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B. Antibiotic susceptibility profiles of escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother. 2001;45:1126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem. 2007;79:2312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Safina G, van Lier M, Danielsson B. Flow-injection assay of the pathogenic bacteria using lectin-based quartz crystal microbalance biosensor. Talanta. 2008;77:468–72.

    Article  CAS  Google Scholar 

  30. Mandal DK, Bhattacharyya L, Koenig SH, Brown RD III, Oscarson S, Brewer CF. Studies of the binding specificity of concanavalin A. Nature of the extended binding site for asparagine-linked carbohydrates. Biochemistry. 1994;33:1157–62.

    Article  CAS  PubMed  Google Scholar 

  31. Tetala KKR, Chen B, Viseer GM, van Beek TA. Single step synthesis of carbohydrate monolithic capillary columns for affinity chromatography of lectins. J Sep Sci. 2007;30:2828–35.

    Article  CAS  PubMed  Google Scholar 

  32. Knirel YA, Valvano MA, editors. Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis, and interaction with host cells. New York: Springer; 2011. p. 1–20.

    Book  Google Scholar 

  33. Cole HB, Ezzell JW, Keller KF, Doyle RJ. Differentiation of Bacillus anthracis and other Bacillus species by lectins. J Clin Microbiol. 1984;19:48–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chacko BK, Appukuttan PS. Peanut (Arachis hypogaea) lectin recognizes α-linked galactose, but not N-acetyl lactosamine in N-linked oligosaccharide terminals. Int J Biol Macromol. 2001;28:365–71.

    Article  CAS  PubMed  Google Scholar 

  35. Sizemore RK, Kendrick AS, Caldwell JJ. Alternate gram staining technique using a fluorescent lectin. Appl Environ Microbiol. 1990;56:2245–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wan Y, Lin Z, Zhang D, Hou B. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron. 2011;26:1959–64.

    Article  CAS  PubMed  Google Scholar 

  37. Saucedo NM, Gao Y, Pham T, Mulchandani A. Lectin and saccharide-functionalized nano-chemiresistor arrays for detection and identification of pathogenic bacterial infection. Biosensors. 2018;8:63.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation Grant 1842718 and W. Ruel Johnson Chair in Environmental Engineering to AM. We thank Dane Reano for his assistance in providing and harvesting MS2 and Tung Pham for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Mulchandani.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1452 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saucedo, N.M., Srinives, S. & Mulchandani, A. Electrochemical Biosensor for Rapid Detection of Viable Bacteria and Antibiotic Screening. J. Anal. Test. 3, 117–122 (2019). https://doi.org/10.1007/s41664-019-00091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00091-2

Keywords

Navigation