Skip to main content

Advertisement

Log in

SERS Nanotags and Their Applications in Biosensing and Bioimaging

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Owing to the unique advantages of surface enhanced Raman scattering (SERS) in high sensitivity, specificity, multiplexing capability and photostability, it has been widely used in many applications, among which SERS biosensing and bioimaging are the focus in recent years. The successful applications of SERS for non-invasive biomarker detection and bioimaging under in vitro, in vivo and ex vivo conditions, offer significant clinical information to improve diagnostic and prognostic outcomes. This review provides recent developments and applications of SERS, in particular SERS nanotags in biosensing and bioimaging, describing case studies in which different types of biomarkers have been investigated, as well as outlining future challenges that need to be addressed before SERS sees both pathological and clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. J Phys Chem C. 2010;114(39):16122–8.

    Article  CAS  Google Scholar 

  2. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–6.

    Article  CAS  Google Scholar 

  3. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 1977;84(1):1–20.

    Article  CAS  Google Scholar 

  4. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99(15):5215–7.

    Article  CAS  Google Scholar 

  5. Otto A, Billmann J, Eickmans J, Ertürk U, Pettenkofer C. The “adatom model” of SERS (surface enhanced Raman scattering): the present status. Surf Sci. 1984;138(2–3):319–38.

    Article  CAS  Google Scholar 

  6. Bruckbauer A, Otto A. Spectroscopy of pyridine adsorbed on Raman single crystal copper electrodes. J Raman Spectrosc. 1998;29:665È72.

    Article  Google Scholar 

  7. Arenas JF, Woolley MS, Otero JC, Marcos JI. Charge-transfer processes in surface-enhanced Raman scattering. Franck-Condon active vibrations of pyrazine. J Phys Chem. 1996;100(8):3199–206.

    Article  CAS  Google Scholar 

  8. Le Ru E, Etchegoin P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Amsterdam: Elsevier; 2008.

    Google Scholar 

  9. Kahl M, Voges E. Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B. 2000;61(20):14078.

    Article  CAS  Google Scholar 

  10. Moskovits M, DiLella D, Maynard K. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation. Langmuir. 1988;4(1):67–76.

    Article  CAS  Google Scholar 

  11. Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys. 1985;57(3):783.

    Article  CAS  Google Scholar 

  12. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36(6–7):485–96.

    Article  CAS  Google Scholar 

  13. Schatz GC. Theoretical studies of surface enhanced Raman scattering. Acc Chem Res. 1984;17(10):370–6.

    Article  CAS  Google Scholar 

  14. Schatz G, Young M, Van Duyne R. Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Berlin: Springer; 2006. p. 19–45.

    Book  Google Scholar 

  15. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hatab NA, Hsueh C-H, Gaddis AL, Retterer ST, Li J-H, Eres G, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010;10(12):4952–5.

    Article  CAS  PubMed  Google Scholar 

  17. Li S, Pedano ML, Chang S-H, Mirkin CA, Schatz GC. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 2010;10(5):1722–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SJ, Morrill AR, Moskovits M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc. 2006;128(7):2200–1.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Hamilton: ACS Publications; 2003.

    Google Scholar 

  20. Wang Y, Irudayaraj J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Phil Trans R Soc B. 2013;368(1611):20120026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem. 2009;10(9–10):1344–54.

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y, Schlucker S. Rational design and synthesis of SERS labels. Analyst. 2013;138(8):2224–38.

    Article  CAS  PubMed  Google Scholar 

  23. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol. 2010;5(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  24. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, et al. A First-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68(3):645–9.

    Article  Google Scholar 

  25. Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.

    Article  CAS  PubMed  Google Scholar 

  26. Lane LA, Qian X, Nie S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev. 2015;115(19):10489–529.

    Article  CAS  PubMed  Google Scholar 

  27. Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2008;8(1):352–61.

    Article  CAS  Google Scholar 

  28. Jia C-P, Zhong X-Q, Hua B, Liu M-Y, Jing F-X, Lou X-H, et al. Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron. 2009;24(9):2836–41.

    Article  CAS  PubMed  Google Scholar 

  29. Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249–57.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: novel optical probes for intracellular sensing and imaging. Biotechnol Adv. 2017;35(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  31. Fabris L. Gold-based SERS tags for biomedical imaging. J Opt. 2015;17(11):114002.

    Article  CAS  Google Scholar 

  32. Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small. 2011;7(23):3261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fabris L. SERS tags: the next promising tool for personalized cancer detection? Chem Nano Mat. 2016;2(4):249–58.

    CAS  Google Scholar 

  34. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP. SERS: materials, applications, and the future. Mater Today. 2012;15(1):16–25.

    Article  CAS  Google Scholar 

  35. Kneipp J, Kneipp H, Wittig B, Kneipp K. Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med. 2010;6(2):214–26.

    Article  CAS  Google Scholar 

  36. Seney CS, Gutzman BM, Goddard RH. Correlation of size and surface-enhanced Raman scattering activity of optical and spectroscopic properties for silver nanoparticles. J Phys Chem C. 2008;113(1):74–80.

    Article  CAS  Google Scholar 

  37. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–71.

    Article  CAS  PubMed  Google Scholar 

  38. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2(3):107–18.

    Article  CAS  Google Scholar 

  39. Van Duyne R, Hulteen J, Treichel D. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys. 1993;99(3):2101–15.

    Article  Google Scholar 

  40. Qiu C, Zhou H, Yang H, Chen M, Guo Y, Sun L. Investigation of n-layer graphenes as substrates for Raman enhancement of crystal violet. J Phys Chem C. 2011;115(20):10019–25.

    Article  CAS  Google Scholar 

  41. Yang L, Gong M, Jiang X, Yin D, Qin X, Zhao B, et al. Investigation on SERS of different phase structure TiO2 nanoparticles. J Raman Spectrosc. 2015;46(3):287–92.

    Article  CAS  Google Scholar 

  42. Livingstone R, Zhou X, Tamargo MC, Lombardi JR, Quagliano LG, Jean-Mary F. Surface enhanced Raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy. J Phys Chem C. 2010;114(41):17460–4.

    Article  CAS  Google Scholar 

  43. Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, et al. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley interdiscip Rev Nanomed Nanobiotechnol. 2015;7(1):17–33.

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc. 2013;135(19):7098–101.

    Article  CAS  PubMed  Google Scholar 

  45. Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, et al. Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size-and shape-dependent Raman enhancement. Nanoscale. 2015;7(7):2862–8.

    Article  CAS  PubMed  Google Scholar 

  46. Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J Phys Chem Lett. 2016;7(12):2264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu G, Forbes TZ, Haes AJ. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst. 2016;141(17):5137–43.

    Article  CAS  PubMed  Google Scholar 

  48. Brazhe N, Parshina E, Khabatova V, Semenova A, Brazhe A, Yusipovich A, et al. Tuning SERS for living erythrocytes: focus on nanoparticle size and plasmon resonance position. J Raman Spectrosc. 2013;44(5):686–94.

    Article  CAS  Google Scholar 

  49. Mir-Simon B, Morla-Folch J, Gisbert-Quilis P, Pazos-Perez N, H-n Xie, Bastús NG, et al. SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size. J Opt. 2015;17(11):114012.

    Article  CAS  Google Scholar 

  50. Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, et al. Highly narrow nanogap-containing Au@ Au core–shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale. 2016;8(4):2090–6.

    Article  CAS  PubMed  Google Scholar 

  51. Lin K-Q, Yi J, Hu S, Liu B-J, Liu J-Y, Wang X, et al. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J Phys Chem C. 2016;120(37):20806–13.

    Article  CAS  Google Scholar 

  52. Zheng P, Li M, Jurevic R, Cushing SK, Liu Y, Wu N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver (I) and mercury (II) in human saliva. Nanoscale. 2015;7(25):11005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yue W, Yang Y, Wang Z, Han J, Syed A, Chen L, et al. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes. J Phys D Appl Phys. 2012;45(42):425401.

    Article  CAS  Google Scholar 

  54. Kahraman M, Wachsmann-Hogiu S. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering. Anal Chim Acta. 2015;856:74–81.

    Article  CAS  PubMed  Google Scholar 

  55. Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem. 2005;77(19):6147–54.

    Article  CAS  PubMed  Google Scholar 

  56. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  57. Liu S, Zheng X, Song L, Liu W, Yao T, Sun Z, et al. Partial-surface-passivation strategy for transition-metal-based copper–gold nanocage. Chem Commun. 2016;52(39):6617–20.

    Article  CAS  Google Scholar 

  58. Wang M, Cao X, Lu W, Tao L, Zhao H, Wang Y, et al. Surface-enhanced Raman scattering immunoassay for carcinoembryonic antigen based on gold nanostars. J Nanosci Nanotechnol. 2016;16(7):6711–8.

    Article  CAS  Google Scholar 

  59. Zhang Q, Moran CH, Xia X, Rycenga M, Li N, Xia Y. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties. Langmuir. 2012;28(24):9047–54.

    Article  CAS  PubMed  Google Scholar 

  60. Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J, Xu H. Multipolar plasmon resonances in individual Ag nanorice. ACS Nano. 2010;4(5):2649–54.

    Article  CAS  PubMed  Google Scholar 

  61. Boca SC, Farcau C, Astilean S. The study of Raman enhancement efficiency as function of nanoparticle size and shape. Nucl Instrum Methods Phys Res, Sect B. 2009;267(2):406–10.

    Article  CAS  Google Scholar 

  62. Yoon JK, Kim K, Shin KS. Raman scattering of 4-aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: effect of size of Au nanoparticles. J Phys Chem C. 2009;113(5):1769–74.

    Article  CAS  Google Scholar 

  63. Kahraman M, Mullen ER, Korkmaz A, Wachsmann-Hogiu S. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics. 2017;6(5):831–52.

    Article  CAS  Google Scholar 

  64. Cinel NA, Bütün S, Ertaş G, Özbay E. ‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates. Small. 2013;9(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  65. Laing S, Jamieson LE, Faulds K, Graham D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry. 2017;1(8):0060.

    Article  CAS  Google Scholar 

  66. Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, et al. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed. 2009;48(11):1950–3.

    Article  CAS  Google Scholar 

  67. Graham D, Faulds K, Smith WE. Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chem Commun. 2006;42:4363–71.

    Article  CAS  Google Scholar 

  68. Graham D, Smith WE, Linacre AM, Munro CH, Watson ND, White PC. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal Chem. 1997;69(22):4703–7.

    Article  CAS  Google Scholar 

  69. Graham D, Mallinder BJ, Smith WE. Surface-enhanced resonance Raman scattering as a novel Method of DNA discrimination. Angew Chem. 2000;112(6):1103–5.

    Article  Google Scholar 

  70. Faulds K, McKenzie F, Smith WE, Graham D. Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew Chem. 2007;119(11):1861–3.

    Article  Google Scholar 

  71. Indrasekara A, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L. Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection. Advanced healthcare materials. 2013;2(10):1370–6.

    Article  CAS  PubMed  Google Scholar 

  72. Mulvaney SP, Musick MD, Keating CD, Natan MJ. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir. 2003;19(11):4784–90.

    Article  CAS  Google Scholar 

  73. Doering WE, Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem. 2003;75(22):6171–6.

    Article  CAS  PubMed  Google Scholar 

  74. Tripp RA, Dluhy RA, Zhao Y. Novel nanostructures for SERS biosensing. Nano Today. 2008;3(3):31–7.

    Article  CAS  Google Scholar 

  75. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev. 2008;37(5):912–20.

    Article  CAS  PubMed  Google Scholar 

  76. Li W, Camargo PH, Lu X, Xia Y. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009;9(1):485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol. 2011;6(7):452–60.

    Article  CAS  PubMed  Google Scholar 

  78. Liu R, Liu B, Guan G, Jiang C, Zhang Z. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem Commun. 2012;48(75):9421–3.

    Article  CAS  Google Scholar 

  79. Cao J, Zhao D, Mao Q. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper. Analyst. 2017;142(4):596–602.

    Article  CAS  PubMed  Google Scholar 

  80. Zheng X-S, Hu P, Cui Y, Zong C, Feng J-M, Wang X, et al. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal Chem. 2014;86(24):12250–7.

    Article  CAS  PubMed  Google Scholar 

  81. Gühlke M, Heiner Z, Kneipp J. Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures. Phys Chem Chem Phys. 2015;17(39):26093–100.

    Article  PubMed  CAS  Google Scholar 

  82. Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, et al. Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem. 2012;84(18):8013–9.

    Article  CAS  PubMed  Google Scholar 

  83. Jamieson LE, Jaworska A, Jiang J, Baranska M, Harrison D, Campbell C. Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst. 2015;140(7):2330–5.

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y, Yuan H, Fales AM, Vo-Dinh T. pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies. J Raman Spectrosc. 2013;44(7):980–6.

    Article  CAS  Google Scholar 

  85. Chen P, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, et al. A wide range optical pH sensor for living cells using Au@ Ag nanoparticles functionalized carbon nanotubes based on SERS signals. Anal Bioanal Chem. 2014;406(25):6337–46.

    Article  CAS  PubMed  Google Scholar 

  86. Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett. 2007;7(9):2819–23.

    Article  CAS  PubMed  Google Scholar 

  87. Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C. 2010;114(16):7421–6.

    Article  CAS  Google Scholar 

  88. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem. 2004;76(23):7064–8.

    Article  CAS  PubMed  Google Scholar 

  89. Kong KV, Dinish U, Lau WKO, Olivo M. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates. Biosens Bioelectron. 2014;54:135–40.

    Article  CAS  PubMed  Google Scholar 

  90. Pang Y, Wang J, Xiao R, Wang S. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens Bioelectron. 2014;61:460–5.

    Article  CAS  PubMed  Google Scholar 

  91. Gu X, Yan Y, Jiang G, Adkins J, Shi J, Jiang G, et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal Bioanal Chem. 2014;406(7):1885–94.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou L, Ding F, Chen H, Ding W, Zhang W, Chou SY. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal Chem. 2012;84(10):4489–95.

    Article  CAS  PubMed  Google Scholar 

  93. Lv Y, Qin Y, Svec F, Tan T. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron. 2016;80:433–41.

    Article  CAS  PubMed  Google Scholar 

  94. Shin MH, Hong W, Sa Y, Chen L, Jung Y-J, Wang X, et al. Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles. Vib Spectrosc. 2014;72:44–9.

    Article  CAS  Google Scholar 

  95. Wang Y, Vaidyanathan R, Shiddiky MJ, Trau M. Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano. 2015;9(6):6354–62.

    Article  CAS  PubMed  Google Scholar 

  96. Kamil Reza K, Wang J, Vaidyanathan R, Dey S, Wang Y, Trau M. Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing. Small. 2017;13(9):1602902.

    Article  CAS  Google Scholar 

  97. Wang Y, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun. 2010;46(4):613–5.

    Article  CAS  Google Scholar 

  98. Wang Y, Rauf S, Grewal YS, Spadafora LJ, Shiddiky MJ, Cangelosi GA, et al. Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal Chem. 2014;86(19):9930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, et al. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano. 2017;11(5):4926–33.

    Article  CAS  PubMed  Google Scholar 

  100. Ngo HT, Wang H-N, Fales AM, Vo-Dinh T. Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem. 2013;85(13):6378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, et al. Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale. 2014;6(15):8521–6.

    Article  CAS  PubMed  Google Scholar 

  102. Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, et al. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosens Bioelectron. 2013;43:193–9.

    Article  CAS  PubMed  Google Scholar 

  103. Liu M, Wang Z, Zong S, Zhang R, Zhu D, Xu S, et al. SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles. Anal Bioanal Chem. 2013;405(18):6131–6.

    Article  CAS  PubMed  Google Scholar 

  104. Chen Y, Chen G, Zheng X, He C, Feng S, Chen Y, et al. Discrimination of gastric cancer from normal by serum RNA based on surface-enhanced Raman spectroscopy (SERS) and multivariate analysis. Med Phys. 2012;39(9):5664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guven B, Dudak FC, Boyaci IH, Tamer U, Ozsoz M. SERS-based direct and sandwich assay methods for mir-21 detection. Analyst. 2014;139(5):1141–7.

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Choi N, Cheng Z, Ko J, Chen L, Choo J. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal Chem. 2017;89(2):1163–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Wee EJ, Trau M. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction. Chem Commun. 2015;51(54):10953–6.

    Article  CAS  Google Scholar 

  108. Wee EJ, Wang Y, Tsao SC, Trau M. Simple, sensitive and accurate multiplex detection of clinically important melanoma dna mutations in circulating tumour DNA with SERS nanotags. Theranostics. 2016;6(10):1506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koo KM, Wee EJ, Mainwaring PN, Wang Y, Trau M. Toward precision medicine: a cancer molecular subtyping Nano-strategy for RNA biomarkers in tumor and urine. Small. 2016;12(45):6233–42.

    Article  CAS  PubMed  Google Scholar 

  110. Gupta VK, Atar N, Yola ML, Eryılmaz M, Torul H, Tamer U, et al. A novel glucose biosensor platform based on Ag@ AuNPs modified graphene oxide nanocomposite and SERS application. J Coll Interface Sci. 2013;406:231–7.

    Article  CAS  Google Scholar 

  111. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc. 2003;125(2):588–93.

    Article  CAS  PubMed  Google Scholar 

  112. Kong KV, Lam Z, Lau WKO, Leong WK, Olivo M. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J Am Chem Soc. 2013;135(48):18028–31.

    Article  CAS  PubMed  Google Scholar 

  113. Ding X, Kong L, Wang J, Fang F, Li D, Liu J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces. 2013;5(15):7072–8.

    Article  CAS  PubMed  Google Scholar 

  114. Crane LG, Wang D, Sears LM, Heyns B, Carron K. SERS surfaces modified with a 4-(2-pyridylazo) resorcinol disulfide derivative: detection of copper, lead, and cadmium. Anal Chem. 1995;67(2):360–4.

    Article  CAS  Google Scholar 

  115. Wang Y, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection. Chem Commun. 2011;47(15):4394–6.

    Article  CAS  Google Scholar 

  116. Li F, Wang J, Lai Y, Wu C, Sun S, He Y, et al. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens Bioelectron. 2013;39(1):82–7.

    Article  PubMed  CAS  Google Scholar 

  117. Žukovskaja O, Jahn IJ, Weber K, Cialla-May D, Popp J. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors. 2017;17(8):1704.

    Article  PubMed Central  CAS  Google Scholar 

  118. Choi CJ, Wu H-Y, George S, Weyhenmeyer J, Cunningham BT. Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites. Lab Chip. 2012;12(3):574–81.

    Article  CAS  PubMed  Google Scholar 

  119. Yang T, Guo X, Wang H, Fu S, Yang H. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens Bioelectron. 2015;68:350–7.

    Article  CAS  PubMed  Google Scholar 

  120. Šimáková P, Kočišová E, Procházka M. Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J Raman Spectrosc. 2013;44(11):1479–82.

    Article  CAS  Google Scholar 

  121. Levin CS, Kundu J, Janesko BG, Scuseria GE, Raphael RM, Halas NJ. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J Physical Chemistry B. 2008;112(45):14168–75.

    Article  CAS  Google Scholar 

  122. Xie Y, Xu L, Wang Y, Shao J, Wang L, Wang H, et al. Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy. Anal Methods. 2013;5(4):946–52.

    Article  CAS  Google Scholar 

  123. Wang Y, Ravindranath S, Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem. 2011;399(3):1271–8.

    Article  CAS  PubMed  Google Scholar 

  124. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    CAS  PubMed  Google Scholar 

  125. Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR Biomed. 2011;24(6):582–91.

    PubMed  PubMed Central  Google Scholar 

  126. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R. SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev. 2008;37(5):1001–11.

    Article  CAS  PubMed  Google Scholar 

  127. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, et al. Recent progress in SERS biosensing. Phys Chem Chem Phys. 2011;13(24):11551–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, et al. Food-related illness and death in the United States. Emerg Infect Dis. 1999;5(5):607–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun. 2011;47(14):4216–8.

    Article  CAS  Google Scholar 

  130. Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J Biophoton. 2013;6(10):785–92.

    CAS  Google Scholar 

  131. Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, et al. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Coll Surf B. 2015;133:296–303.

    Article  CAS  Google Scholar 

  132. Dinish US, Balasundaram G, Chang Y-T, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep. 2014;4:4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal Chem. 2012;85(1):208–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Xiao M, Lin L, Li Z, Liu J, Hong S, Li Y, et al. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters. Chem Asian J. 2014;9(8):2040–4.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angewandte Chemie Int Ed. 2013;52(4):1148–51.

    Article  CAS  Google Scholar 

  136. McVeigh PZ, Mallia RJ, Veilleux I, Wilson BC. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J Biomed Opt. 2013;18(4):046011.

    Article  PubMed  Google Scholar 

  137. Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Interfaces. 2014;6(7):5152–60.

    Article  CAS  PubMed  Google Scholar 

  138. Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5(9):946–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mallia RJ, McVeigh PZ, Veilleux I, Wilson BC. Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. J Biomed Opt. 2012;17(7):0760171–5.

    Article  Google Scholar 

  140. Wang Y, Seebald JL, Szeto DP, Irudayaraj J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano. 2010;4(7):4039–53.

    Article  CAS  PubMed  Google Scholar 

  141. Yigit MV, Zhu L, Ifediba MA, Zhang Y, Carr K, Moore A, et al. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano. 2010;5(2):1056–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yigit MV, Medarova Z. In vivo and ex vivo applications of gold nanoparticles for biomedical SERS imagingi. Am J Nucl Med Mol Imaging. 2012;2(2):232–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small. 2011;7(5):625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, et al. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomed. 2012;7:73–82.

    Google Scholar 

  145. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc. 2006;37(7):719–21.

    Article  CAS  Google Scholar 

  146. Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron. 2014;51:238–43.

    Article  CAS  PubMed  Google Scholar 

  147. Nima ZA, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin DA, et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep. 2014;4:4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu R, Zhao J, Han G, Zhao T, Zhang R, Liu B, et al. Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl Mater Interfaces. 2017;9(44):38222–9.

    Article  CAS  PubMed  Google Scholar 

  149. Oseledchyk A, Andreou C, Wall MA, Kircher MF. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano. 2017;11(2):1488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Discovery Early Career Research Award (DECRA-DE 140101056) to Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Jiang, L., Piper, J.A. et al. SERS Nanotags and Their Applications in Biosensing and Bioimaging. J. Anal. Test. 2, 26–44 (2018). https://doi.org/10.1007/s41664-018-0053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0053-9

Keywords

Navigation