Skip to main content

Advertisement

Log in

Signal Amplification for Highly Sensitive Immunosensing

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

To dissolve the bottleneck problem of life and biomedical science in detection of biomolecules with low abundance and acquisition of ultraweak biological signals, highly sensitive analytical methods coupling with the specificity of biological recognition events have been quickly developed by the exploring of signal amplification strategies. These strategies have extensively been introduced into the development of highly sensitive immunosensing methods by combining with highly specific immunological recognition. They can be divided into two groups. One group of strategies attempts to transfer the immunological recognition event into large number of reporter probes or signal probes for signal readout by employing nano/micro-materials as vehicles for multi-labeling and/or molecular biological amplification for increasing the abundance of the signal molecules. The other uses nanomaterials or enzyme mimics as catalytic tools/tags to obtain enhanced detection signal. This review focuses on the significant advances in design of signal amplification strategies for highly sensitive immunosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Reprinted with permission from [69]

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ju HX. Sensitive biosensing strategy based on functional nanomaterials. Sci China Chem. 2011;54:1202–17.

    Article  CAS  Google Scholar 

  2. Lei JP, Ju HX. Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev. 2012;41:2122–34.

    Article  CAS  Google Scholar 

  3. Ju HX, Zhang XJ, Wang J. Nanobiosensing: principles, development and application. New York: Springer Science + Business Media; 2011.

    Book  Google Scholar 

  4. Hempen C, Karst U. Labeling strategies for bioassays. Anal Bioanal Chem. 2006;384:572–83.

    Article  CAS  Google Scholar 

  5. Pei XM, Zhang B, Tang J, Liu BQ, Lai WQ, Tang DP. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta. 2013;758:1–18.

    Article  CAS  Google Scholar 

  6. Fenzl C, Hirsch T, Baeumner AJ. Nanomaterials as versatile tools for signal amplification in (bio)analytical applications. TrAC Trends Anal Chem. 2016;79:306–16.

    Article  CAS  Google Scholar 

  7. Zhou S, Yuan L, Hua X, Xu L, Liu S. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: a review. Anal Chim Acta. 2015;877:19–32.

    Article  CAS  Google Scholar 

  8. Lin X, Sun X, Luo S, Liu B, Yang C. Development of DNA-based signal amplification and microfluidic technology for protein assay: a review. TrAC Trends Anal Chem. 2016;80:132–48.

    Article  CAS  Google Scholar 

  9. Bera D, Qian L, Tseng T, Holloway P. Quantum dots and their multimodal applications: a review. Materials. 2010;3:2260–345.

    Article  CAS  Google Scholar 

  10. Yuan L, Hua X, Wu YF, Pan XH, Liu SQ. Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem. 2011;83:6800–9.

    Article  CAS  Google Scholar 

  11. Yuan L, Xu LL, Liu SQ. Integrated tyramide and polymerization-assisted signal amplification for highly-sensitive immunoassay. Anal Chem. 2012;84:10737–44.

    Article  CAS  Google Scholar 

  12. Yu X, Munge B, Pate V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc. 2006;128:11199–205.

    Article  CAS  Google Scholar 

  13. Hou L, Cui YL, Xu MD, Gao ZQ, Huang JX, Tang DP. Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens Bioelectron. 2013;23:149–56.

    Article  Google Scholar 

  14. Lai GS, Cheng H, Xin DH, Zhang HL, Yu AM. Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay. Anal Chim Acta. 2016;902:189–95.

    Article  CAS  Google Scholar 

  15. Lai GS, Yan F, Ju HX. Dual signal amplification of glucose oxidase-functionalized nanocomposites as trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem. 2009;81:9730–6.

    Article  CAS  Google Scholar 

  16. Ding L, Bond AM, Zhai J, Zhang J. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta. 2013;797:1–12.

    Article  CAS  Google Scholar 

  17. Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. Strategic applications of nanomaterials as sensing platforms and signal amplification markers at electrochemical immunosensors. Electroanalysis. 2016;28:1730–49.

    Article  CAS  Google Scholar 

  18. Zhang B, Tang D, Liu B, Cui Y, Chen H, Chen G. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid–stimulating hormone. Anal Chim Acta. 2012;711:17–23.

    Article  CAS  Google Scholar 

  19. Lu W, Cao X, Tao L, Ge J, Dong J, Qian W. A novel label-free amperometric immunosensor for carcinoembryonic antigen based on Ag nanoparticle decorated infinite coordination polymer fibres. Biosens Bioelectron. 2014;57C:219–25.

    Article  Google Scholar 

  20. Zhang Q, Prabhu A, San A, Alsharab JF, Levon K. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens Bioelectron. 2015;72:100–6.

    Article  CAS  Google Scholar 

  21. Johari-Ahar M, Rashidi MR, Barar J, Aghaie M, Mohammadnejad D, Ramazani A. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale. 2015;7:3768–79.

    Article  CAS  Google Scholar 

  22. Canbaz MÇ, Sezgintürk MK. Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection. Anal Biochem. 2014;446:9–18.

    Article  CAS  Google Scholar 

  23. Leng C, Lai GS, Yan F, Ju HX. Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip. Anal Chim Acta. 2010;666:97–101.

    Article  CAS  Google Scholar 

  24. Cheng H, Lai GS, Fu L, Zhang HL, Yu AM. Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay. Biosens Bioelectron. 2015;71:353–8.

    Article  CAS  Google Scholar 

  25. Lai GS, Wu J, Ju HX, Yan F. Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater. 2011;21:2938–43.

    Article  CAS  Google Scholar 

  26. Song W, Li H, Liu HP, Wu ZS, Qiang WB, Xu DK. Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E. Electrochem Commun. 2013;31:16–9.

    Article  CAS  Google Scholar 

  27. Jiang XC, Chen K, Wang J, Shao K, Fu T, Shao F, Lu DL, Liang JG, Foda MF, Han HY. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide–Ag nanoparticle composites as labels. Analyst. 2013;138:3388–93.

    Article  CAS  Google Scholar 

  28. Li LH, Feng DX, Zhang YZ. Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal Biochem. 2016;505:59–65.

    Article  CAS  Google Scholar 

  29. Deng SY, Lei JP, Huang Y, Yao XN, Ding L, Ju HX. Electrocatalytic reduction of coreactant by highly loaded dendrimer-encapsulated palladium nanoparticles for sensitive electrochemiluminescent immunoassay. Chem Commun. 2012;48:9159–61.

    Article  CAS  Google Scholar 

  30. Lai GS, Yan F, Wu J, Leng C, Ju HX. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem. 2011;83:2726–32.

    Article  CAS  Google Scholar 

  31. Lin DJ, Wu J, Ju HX, Yan F. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron. 2014;52:153–8.

    Article  CAS  Google Scholar 

  32. Lin DJ, Wu J, Ju HX, Yan F. Signal amplification for electrochemical immunosensing by in situ assembly of host-guest linked gold nanorod superstructure on immunocomplex. Biosens Bioelectron. 2013;45:195–200.

    Article  CAS  Google Scholar 

  33. Lin JH, Ju HX. Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens Bioelectron. 2005;20:1461–70.

    Article  CAS  Google Scholar 

  34. Song WY, Ding L, Chen YL, Ju HX. Plasmonic coupling of dual gold nanoprobes for sers imaging of sialic acids on living cells. Chem Commun. 2016;52:10640–3.

    Article  CAS  Google Scholar 

  35. Shourian M, Ghourchian H, Boutorabi M. Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal Chim Acta. 2015;895:1–8.

    Article  CAS  Google Scholar 

  36. Sabouri S, Ghourchian H, Shourian M, Boutorabi M. A gold nanoparticle-based immunosensor for the chemiluminescence detection of the hepatitis b surface antigen. Anal Methods. 2014;6:5059–66.

    Article  CAS  Google Scholar 

  37. Li L, Chen Y, Lu Q, Ji J, Shen Y, Xu M, Fei R, Yang G, Zhang K, Zhang J, Zhu J. Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Sci Rep. 2013;3:776.

    Google Scholar 

  38. Wang QG, Yang ZM, Zhang XQ, Xiao X, Chang C, Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed. 2007;46:4285–9.

    Article  CAS  Google Scholar 

  39. Hazarika P, Ceyhan B, Niemeyer CM. Sensitive detection of proteins using difunctional DNA–gold nanoparticles. Small. 2005;1:844–8.

    Article  CAS  Google Scholar 

  40. Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem. 2000;72:5521–8.

    Article  CAS  Google Scholar 

  41. Authier L, Grossiord C, Brossier P. Gold nanoparticle–based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem. 2001;73:4450–6.

    Article  CAS  Google Scholar 

  42. Yang J, Zheng L, Wang Y, Li W, Zhang J, Gu J, Fu Y. Guanine rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosens Bioelectron. 2016;77:549–56.

    Article  CAS  Google Scholar 

  43. Kosman J, Juskowiak B. Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta. 2011;707:7–17.

    Article  CAS  Google Scholar 

  44. Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA aptamer–hemin complex. Chem Boil. 1998;5:505–17.

    Article  CAS  Google Scholar 

  45. Sharon E, Freeman R, Willner I. CdSe/ZnS quantum dots–G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem. 2010;82:7073–7.

    Article  CAS  Google Scholar 

  46. Zong C, Wu J, Xu J, Ju HX, Yan F. Multilayer hemin/G-quadruplex wrapped gold nanoparticles as tag for ultrasensitive multiplex immunoassay by chemiluminescence imaging. Biosens Bioelectron. 2013;43:372–8.

    Article  CAS  Google Scholar 

  47. Xu J, Wu J, Zong C, Ju HX, Yan F. Manganese porphyrin–dsDNA complex: a mimicking enzyme for highly efficient bioanalysis. Anal Chem. 2013;85:3374–9.

    Article  CAS  Google Scholar 

  48. Wang G, Shu J, Dong Y, Wu X, Li Z. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification. Biosens Bioelectron. 2015;66:283–9.

    Article  Google Scholar 

  49. Deng SY, Lei JP, Huang Y, Cheng Y, Ju HX. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Anal Chem. 2013;85:5390–6.

    Article  CAS  Google Scholar 

  50. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech. 2007;2:577–83.

    Article  CAS  Google Scholar 

  51. Wei H, Wang EK. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    Article  CAS  Google Scholar 

  52. Ma W, Yin H, Xu L, Xu Z, Kuang H, Wang L. Femtogram ultrasensitive aptasensor for the detection of ochratoxin A. Biosens Bioelectron. 2013;42:545–9.

    Article  CAS  Google Scholar 

  53. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X. Colorimetric aptasensing of ochratoxin A using Au@ Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron. 2016;77:1183–91.

    Article  CAS  Google Scholar 

  54. Wei Q, Li T, Wang GL, Li H, Qian ZY, Yang MH. Fe3O4 nanoparticles-loaded PEG–PLA polymeric vesicles as labels for ultrasensitive immunosensors. Biomaterials. 2010;31:7332–9.

    Article  CAS  Google Scholar 

  55. Tseng CW, Chang HY, Chang JY, Huang CC. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale. 2012;4:6823–30.

    Article  CAS  Google Scholar 

  56. Hou L, Gao Z, Xu M, Cao X, Wu X, Chen G, Tang D. DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosens Bioelectron. 2014;54:365–71.

    Article  CAS  Google Scholar 

  57. Wang LS, Lei JP, Ma RN, Ju HX. Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal Chem. 2013;85:6505–10.

    Article  CAS  Google Scholar 

  58. Cheng W, Yan F, Ding L, Ju HX, Yin YB. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem. 2010;82:3337–42.

    Article  CAS  Google Scholar 

  59. Sano T, Smith C, Cantor C. Immuno-PCR: very sensitive antigen detection by means of specific antibody–DNA conjugates. Science. 1992;258:120–2.

    Article  CAS  Google Scholar 

  60. Janssen KPF, Knez K, Spasic D, Lammertyn J. Nucleic acids for ultra-sensitive protein detection. Sensors. 2013;13:1353–84.

    Article  CAS  Google Scholar 

  61. Ruzicka V, März W, Russ A, Gross W. Immuno-PCR with a commercially available avidin system. Science. 1993;260:698–9.

    Article  CAS  Google Scholar 

  62. Zhou H, Fisher R, Papas T. Universal immuno-PCR for ultrasensitive target protein detection. Nucleic Acids Res. 1993;21:6038–9.

    Article  CAS  Google Scholar 

  63. Joerger R, Truby T, Hendrickson E, Young R, Ebersole R. Analyte detection with DNA-labeled antibodies and polymerase chain reaction. Clin Chem. 1995;41:1371–7.

    CAS  Google Scholar 

  64. Nam J, Thaxton CS, Mirkin CA. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.

    Article  CAS  Google Scholar 

  65. Chen LY, Wei HP, Guo YC, Cui ZQ, Zhang ZP, Zhang XE. Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein. J Immunol Methods. 2009;346:64–70.

    Article  CAS  Google Scholar 

  66. Kobori T, Matsumoto A, Takahashi H, Sugiyama S. Rolling circle amplification for signal enhancement in ovalbumin detection. Anal Sci. 2009;25:1381–3.

    Article  CAS  Google Scholar 

  67. Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA. 2000;97:10113–9.

    Article  CAS  Google Scholar 

  68. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115:12491–545.

    Article  CAS  Google Scholar 

  69. Xue Q, Wang Z, Wang L, Jiang W. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification. Bioconjugate Chem. 2012;23:734–9.

    Article  CAS  Google Scholar 

  70. Yan J, Song S, Li B, Zhang Q, Huang Q, Zhang H, Fan C. An on-nanoparticle rolling-circle amplification platform for ultrasensitive protein detection in biological fluids. Small. 2010;6:2520–5.

    Article  CAS  Google Scholar 

  71. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA. 2004;101:15275–8.

    Article  CAS  Google Scholar 

  72. Hecht A, Kumar AA, Kopelman R. Label-acquired magnetorotation as a signal transduction method for protein detection: aptamer-based detection of thrombin. Anal Chem. 2011;83:7123–8.

    Article  CAS  Google Scholar 

  73. Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang C, Wang K, Tan W. Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed. 2011;50:401–4.

    Article  CAS  Google Scholar 

  74. Song C, Xie G, Wang L, Liu L, Tian G, Xiang H. DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron. 2014;58:68–74.

    Article  CAS  Google Scholar 

  75. Tong L, Wu J, Li J, Ju HX, Yan F. Hybridization chain reaction engineered DNA nanopolylinker for amplified electrochemical sensing of biomarkers. Analyst. 2013;138:4870–6.

    Article  CAS  Google Scholar 

  76. Song W, Zhu K, Cao Z, Lau C, Lu J. Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst. 2012;137:1396–401.

    Article  CAS  Google Scholar 

  77. Dai S, Xue Q, Zhu J, Ding Y, Jiang W, Wang L. An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags. Biosens Bioelectron. 2014;51:421–5.

    Article  CAS  Google Scholar 

  78. Xiao L, Chai Y, Yuan R, Cao Y, Wang H, Bai L. Amplified electrochemiluminescence of luminol based on hybridization chain reaction and in situ generate co-reactant for highly sensitive immunoassay. Talanta. 2013;115:577–82.

    Article  CAS  Google Scholar 

  79. Xu Q, Zhu G, Zhang CY. Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label. Anal Chem. 2013;85:6915–21.

    Article  CAS  Google Scholar 

  80. Wang X, Jiang A, Hou T, Li H, Li F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target–triggered hybridization chain reaction amplification. Biosens Bioelectron. 2015;70:324–9.

    Article  Google Scholar 

  81. Li F, Lin YW, Le XC. Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. Anal Chem. 2013;85:10835–41.

    Article  CAS  Google Scholar 

  82. Zhang HQ, Lai MD, Zuehlke A, Peng HY, Li XF, Le XC. Binding-induced DNA nanomachines triggered by proteins and nucleic acids. Angew Chem Int Ed. 2015;54:14326–30.

    Article  CAS  Google Scholar 

  83. Söderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods. 2008;45:227–32.

    Article  Google Scholar 

  84. Ren KW, Wu J, Yan F, Ju HX. Ratiometric electrochemical proximity assay for sensitive one-step protein detection. Sci Rep. 2014;4:4360–5.

    Google Scholar 

  85. Ren KW, Wu J, Yan F, Zhang Y, Ju HX. Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron. 2015;66:345–9.

    Article  CAS  Google Scholar 

  86. Zong C, Wu J, Liu MM, Yang LL, Yan F, Ju HX. Chemiluminescence imaging for a protein assay via proximity-dependent DNAzyme formation. Anal Chem. 2014;86:9939–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (21361162002, 21635005), and Priority development areas of The National Research Foundation for the Doctoral Program of Higher Education of China (20130091130005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, H. Signal Amplification for Highly Sensitive Immunosensing. J. Anal. Test. 1, 7 (2017). https://doi.org/10.1007/s41664-017-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-017-0008-6

Keywords

Navigation