Skip to main content

Advertisement

Log in

Optical Biosensing of Bacteria and Bacterial Communities

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Bacterial sensing is important for understanding the numerous roles bacteria play in nature and in technology, understanding and managing bacterial populations, detecting pathogenic bacterial infections, and preventing the outbreak of illness. Current analytical challenges in bacterial sensing center on the dilemma of rapidly acquiring quantitative information about bacteria with high detection efficiency, sensitivity, and specificity, while operating within a reasonable budget and optimizing the use of ancillary tools, such as multivariate statistics. This review starts from a general description of bacterial sensing methods and challenges, and then focuses on bacterial characterization using optical methods including Raman spectroscopy and imaging, infrared spectroscopy, fluorescence spectroscopy and imaging, and plasmonics, including both extended and localized surface plasmon resonance spectroscopy. The advantages and drawbacks of each method in relation to the others are discussed, as are their applications. A particularly promising direction in bacterial sensing lies in combining multiple approaches to achieve multiplex analysis, and examples where this has been achieved are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Hara GW. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agric. 2001;41:417–33.

    Article  Google Scholar 

  2. Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol. 2003;154(3):157–64.

    Article  CAS  Google Scholar 

  3. About the HMP. NIH Human Microbiome Project Website. http://hmpdacc.org/overview/about.php. Accessed 15 Nov 2016.

  4. Antibiotic/Antibicrobial Resistance. Centers for Disease Control and Prevention Website. 2016. https://www.cdc.gov/drugresistance/. Accessed 15 Nov 2016.

  5. Antimicrobial Resistance. World Health Organization Website. 2016. http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed 15 Nov 2016.

  6. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 2006;22(5):752–8.

    Article  CAS  Google Scholar 

  7. Gracias KS, McKillip JL. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol. 2004;50(11):883–90.

    Article  CAS  Google Scholar 

  8. Swaminathan B, Feng P. Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 1994;48:401–26.

    Article  CAS  Google Scholar 

  9. Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci. 2013;53(1):11–48.

    Article  CAS  Google Scholar 

  10. Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R. Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem Soc Rev. 2012;41(17):5706–27.

    Article  CAS  Google Scholar 

  11. Bloos F, Reinhart K. Rapid diagnosis of sepsis. Virulence. 2014;5(1):154–60.

    Article  Google Scholar 

  12. Hong W, Liao C-S, Zhao H, Younis W, Zhang Y, Seleem MN, et al. In situ detection of a single bacterium in complex environment by yyperspectral CARS imaging. ChemistrySelect. 2016;3:513–7.

    Article  CAS  Google Scholar 

  13. Lu X, Samuelson DR, Xu Y, Zhang H, Wang S, Rasco BA, et al. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Anal Chem. 2013;85(4):2320–7.

    Article  CAS  Google Scholar 

  14. Xu J, Turner JW, Idso M, Biryukov SV, Rognstad L, Gong H, et al. In situ strain-level detection and identification of Vibrio parahaemolyticus using surface-enhanced Raman spectroscopy. Anal Chem. 2013;85(5):2630–7.

    Article  CAS  Google Scholar 

  15. Xu J, Zhang L, Gong H, Homola J, Yu Q. Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms. Small. 2011;7:371–6.

    Article  CAS  Google Scholar 

  16. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–71.

    Article  CAS  Google Scholar 

  17. Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc. 2006;128:10304–9.

    Article  CAS  Google Scholar 

  18. Hossain SMZ, Ozimok C, Sicard C, Aguirre SD, Ali MM, Li Y, et al. Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem. 2012;403(6):1567–76.

    Article  CAS  Google Scholar 

  19. Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis. 2008;88(6):526–44.

    Article  CAS  Google Scholar 

  20. Rodriguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, et al. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol. 2006;24(2):191–7.

    Article  CAS  Google Scholar 

  21. Kang T, Yoo SM, Yoon I, Lee SY, Kim B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 2010;10(4):1189–93.

    Article  CAS  Google Scholar 

  22. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8(12):4469–76.

    Article  CAS  Google Scholar 

  23. Arora R, Petrov GI, Yakovlev VV, Scully MO. Detecting anthrax in the mail by coherent Raman microspectroscopy. Proc Natl Acad Sci USA. 2012;109(4):1151–3.

    Article  CAS  Google Scholar 

  24. Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, et al. Single-shot detection of bacterial endospores via coherent Raman spectroscopy. Proc Natl Acad Sci USA. 2008;105(2):422–7.

    Article  CAS  Google Scholar 

  25. Cheng I-F, Chang H-C, Chen T-Y, Hu C, Yang F-L. Rapid (< 5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Sci Rep. 2013;3:2365.

    Google Scholar 

  26. Mouffouk F, da Costa AM, Martins J, Zourob M, Abu-Salah KM, Alrokayan SA. Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron. 2011;26(8):3517–23.

    Article  CAS  Google Scholar 

  27. Wang Y, Knoll W, Dostalek J. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal Chem. 2012;84(19):8345–50.

    Article  CAS  Google Scholar 

  28. Harz M, Kiehntopf M, Stockel S, Rosch P, Straube E, Deufel T, et al. Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy. J Biophoton. 2009;2(1–2):70–80.

    Article  CAS  Google Scholar 

  29. Pahlow S, Stockel S, Pollok S, Cialla-May D, Rosch P, Weber K, et al. Rapid identification of Pseudomonas spp. via Raman spectroscopy using pyoverdine as capture probe. Anal Chem. 2016;88(3):1570–7.

    Article  CAS  Google Scholar 

  30. Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E. Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst. 2016;141(18):5432–40.

    Article  CAS  Google Scholar 

  31. Fu J, Park B, Zhao Y. Limitation of a localized surface plasmon resonance sensor for Salmonella detection. Sensor Actuat B Chem. 2009;141(1):276–83.

    Article  CAS  Google Scholar 

  32. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA. 2006;103(13):4841–5.

    Article  CAS  Google Scholar 

  33. Baig NF, Dunham SJ, Morales-Soto N, Shrout JD, Sweedler JV, Bohn PW. Multimodal chemical imaging of molecular messengers in emerging Pseudomonas aeruginosa bacterial communities. Analyst. 2015;140(19):6544–52.

    Article  CAS  Google Scholar 

  34. Masyuko RN, Lanni EJ, Driscoll CM, Shrout JD, Sweedler JV, Bohn PW. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy. Analyst. 2014;139(22):5700–8.

    Article  CAS  Google Scholar 

  35. Baccar H, Mejri MB, Hafaiedh I, Ktari T, Aouni M, Abdelghani A. Surface plasmon resonance immunosensor for bacteria detection. Talanta. 2010;82(2):810–4.

    Article  CAS  Google Scholar 

  36. Linman MJ, Sugerman K, Cheng Q. Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sensor Actuat B Chem. 2010;145(2):613–9.

    Article  CAS  Google Scholar 

  37. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP. A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B. 2003;107:1772–80.

    Article  CAS  Google Scholar 

  38. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, et al. Aptamer-based impedimetric sensor for bacterial typing. Anal Chem. 2012;84(19):8114–7.

    Article  CAS  Google Scholar 

  39. Wang KY, Zeng YL, Yang XY, Li WB, Lan XP. Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol. 2011;30(2):273–8.

    Article  Google Scholar 

  40. Chung J, Kang JS, Jurng JS, Jung JH, Kim BC. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron. 2015;67:303–8.

    Article  CAS  Google Scholar 

  41. Xie L, Yan X, Du Y. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens Bioelectron. 2014;53:58–64.

    Article  CAS  Google Scholar 

  42. Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1863.

    Google Scholar 

  43. Doorneweerd DD, Henne WA, Reifenberger RG, Low PS. Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir. 2010;26(19):15424–9.

    Article  CAS  Google Scholar 

  44. Tawil N, Sacher E, Mandeville R, Meunier M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron. 2012;37(1):24–9.

    Article  CAS  Google Scholar 

  45. Tripathi SM, Bock WJ, Mikulic P, Chinnappan R, Ng A, Tolba M, et al. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens Bioelectron. 2012;35(1):308–12.

    Article  CAS  Google Scholar 

  46. Mannoor MS, Zhang S, Link AJ, McAlpine MC. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci USA. 2010;107(45):19207–12.

    Article  CAS  Google Scholar 

  47. Pages JM, Kascakova S, Maigre L, Allam A, Alimi M, Chevalier J, et al. New peptide-based antimicrobials for tackling drug resistance in bacteria: single-cell fluorescence imaging. ACS Med Chem Lett. 2013;4(6):556–9.

    Article  CAS  Google Scholar 

  48. Adak AK, Leonov AP, Ding N, Thundimadathil J, Kularatne S, Low PS, et al. Bishydrazide Glycoconjugates for Lectin Recognition and Capture of Bacterial Pathogens. Bioconjugate Chem. 2010;21:2065–75.

    Article  CAS  Google Scholar 

  49. Dwivedi HP, Smiley RD, Jaykus L-A. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol. 2010;87:2323–34.

    Article  CAS  Google Scholar 

  50. Kutter E, Sulakvelidze A. Bacteriophages: biology and applications. Florida: CRC Press; 2004.

    Book  Google Scholar 

  51. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E. Biosensors for detection of pathogenic bacteria. Biosens Bioelectron. 1999;14:599–624.

    Article  CAS  Google Scholar 

  52. Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–46. doi:10.1128/CMR.00120-13.

    Article  CAS  Google Scholar 

  53. Krafft C, Dietzek B, Popp J. Raman and CARS microspectroscopy of cells and tissues. Analyst. 2009;134(6):1046–57.

    Article  CAS  Google Scholar 

  54. Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004;76:40–7.

    Article  CAS  Google Scholar 

  55. Walter A, Marz A, Schumacher W, Rosch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011;11(6):1013–21.

    Article  CAS  Google Scholar 

  56. Jeanmaire DL, van Duyne RP. Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:1–20.

    Article  CAS  Google Scholar 

  57. Pahlow S, Meisel S, Cialla-May D, Weber K, Rosch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliver Rev. 2015;89:105–20.

    Article  CAS  Google Scholar 

  58. Pettinger B, Schambach P, Villagomez CJ, Scott N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem. 2012;63:379–99.

    Article  CAS  Google Scholar 

  59. Etchegoin PG, Lacharmoise PD, Le Ru RC. Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors. Anal Chem. 2009;81:682–8.

    Article  CAS  Google Scholar 

  60. Yang X, Gu C, Qian F, Li Y, Zhang JZ. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem. 2011;83(15):5888–94.

    Article  CAS  Google Scholar 

  61. Sengupta A, Mujacic M, Davis EJ. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2006;386(5):1379–86.

    Article  CAS  Google Scholar 

  62. Cowcher DP, Xu Y, Goodacre R. Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering. Anal Chem. 2013;85(6):3297–302.

    Article  CAS  Google Scholar 

  63. Temur E, Boyacı İH, Tamer U, Unsal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem. 2010;397(4):1595–604.

    Article  CAS  Google Scholar 

  64. Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyac IH. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst. 2011;136(4):740–8.

    Article  CAS  Google Scholar 

  65. Stockle RM, Suh YD, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett. 2000;318:131–6.

    Article  CAS  Google Scholar 

  66. Rusciano G, Zito G, Isticato R, Sirec T, Ricca E, Bailo E, et al. Nanoscale chemical imaging of Bacillus subtilis spores by combining tip-enhanced Raman scattering and advanced statistical tools. ACS Nano. 2014;8:12300–9.

    Article  CAS  Google Scholar 

  67. Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem. 2006;7(7):1428–30.

    Article  CAS  Google Scholar 

  68. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, et al. Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem. 2007;8(1):124–37.

    Article  CAS  Google Scholar 

  69. Dementjev A, Kostkevičiene J. Applying the method of coherent anti-Stokes Raman microscopy for imaging of carotenoids in microalgae and cyanobacteria. J Raman Spectrosc. 2013;44(7):973–9.

    Article  CAS  Google Scholar 

  70. Gaus K, Rosch P, Petry R, Peschke KD, Ronneberger O, Burkhardt H, et al. Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers. 2006;82(4):286–90.

    Article  CAS  Google Scholar 

  71. Scully MO, Kattawar GW, Lucht RP, Opatrny T, Pilloff H, Rebane A, et al. FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores. Proc Natl Acad Sci USA. 2002;99(17):10994–1001.

    Article  CAS  Google Scholar 

  72. Morris MD, Wallan DJ. Resonance Raman spectroscopy. Anal Chem. 1979;51:182A–92A.

    CAS  Google Scholar 

  73. Jarvis RM, Goodacre R. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiol Lett. 2004;232(2):127–32.

    Article  CAS  Google Scholar 

  74. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–26.

    Article  CAS  Google Scholar 

  75. Polisetti S, Bible AN, Morrell-Falveyb JL, Bohn PW. Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst. 2016;141:2175–82.

    Article  CAS  Google Scholar 

  76. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009;11(2):279–88.

    Article  CAS  Google Scholar 

  77. Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol. 2011;77(2):413–28.

    Article  CAS  Google Scholar 

  78. Polisetti S, Baig NF, Morales-Soto N, Shrout JD, Bohn PW. Spatial mapping of pyocyanin in Pseudomonas aeruginosa bacterial communities using surface enhanced Raman scattering. Appl Spectrosc. 2016. doi:10.1177/0003702816654167.

  79. Nicolaou N, Xu Y, Goodacre R. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Anal Chem. 2011;83(14):5681–7.

    Article  CAS  Google Scholar 

  80. Bosch A, Miñán A, Vescina C, Degrossi J, Gatti B, Montanaro P, et al. Fourier transform infrared spectroscopy for rapid identification of nonfermenting Gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol. 2008;46(8):2535–46.

    Article  CAS  Google Scholar 

  81. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5:3936.

    Article  CAS  Google Scholar 

  82. van den Berg PAW, van Hoek A, Walentas CD, Perham RN, Visser AJWG. Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. Biophys J. 1998;74(4):2046–58.

    Article  Google Scholar 

  83. Chapman JS, Georgopapadakou NH. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988;32(4):438–42.

    Article  CAS  Google Scholar 

  84. Teale FWJ, Weber G. Ultraviolet fluorescence of the aromatic amino acids. Biochem J. 1957;65(3):476–82.

    Article  CAS  Google Scholar 

  85. Balestrino D, Hamon MA, Dortet L, Nahori MA, Pizarro-Cerda J, Alignani D, et al. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol. 2010;76(11):3625–36.

    Article  CAS  Google Scholar 

  86. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273:1392.

    Article  CAS  Google Scholar 

  87. Miller WG, Bates AH, Horn ST, Brandl MT, Wachtel MR, Mandrell RE. Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp, and cfp marker plasmids. Appl Environ Microbiol. 2000;66:5426–36.

    Article  CAS  Google Scholar 

  88. Ransom EM, Ellermeier CD, Weiss DS. Use of mCherry red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Appl Environ Microbiol. 2015;81(5):1652–60.

    Article  CAS  Google Scholar 

  89. van Zyl WF, Deane SM, Dicks LM. Use of the mCherry fluorescent protein to study intestinal colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in mice. Appl Environ Microbiol. 2015;81(17):5993–6002.

    Article  CAS  Google Scholar 

  90. Flynn JD, Haas BL, Biteen JS. Plasmon-enhanced fluorescence from single proteins in living bacteria. J Phys Chem C. 2016;120(37):20512–7.

    Article  CAS  Google Scholar 

  91. Bastiaens PIH, Majoul IV, Verveer PJ, Soling H-D, Jovin TM. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 1996;15:4246.

    CAS  Google Scholar 

  92. van Oosten M, Schafer T, Gazendam JAC, Ohlsen K, Tsompanidou E, de Goffau MC, et al. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun. 2013;4:2584.

    Google Scholar 

  93. Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, et al. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater. 2011;10:602–7.

    Article  CAS  Google Scholar 

  94. Panizzi P, Nahrendorf M, Figueiredo J-L, Panizzi J, Marinelli B, Iwamoto Y, et al. In Vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med. 2011;17:1142–6.

    Article  CAS  Google Scholar 

  95. Meyer P, Dworkin J. Applications of fluorescence microscopy to single bacterial cells. Res Microbiol. 2007;158(3):187–94.

    Article  CAS  Google Scholar 

  96. Krause M, Rosch P, Radt B, Popp J. Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy. Anal Chem. 2008;80:8568–75.

    Article  CAS  Google Scholar 

  97. Disney MD, Zheng J, Swager TM, Seeberger PH. Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc. 2004;126(41):13343–6.

    Article  CAS  Google Scholar 

  98. Bruchez M Jr, Moronne M, Gin P, Weiss S, Paul Alivisatos A. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6.

    Article  CAS  Google Scholar 

  99. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–18.

    Article  Google Scholar 

  100. Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol. 2010;109(3):808–17.

    Article  CAS  Google Scholar 

  101. Ohk SH, Bhunia AK. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol. 2013;33(2):166–71.

    Article  CAS  Google Scholar 

  102. Nicolini AM, Fronczek CF, Yoon JY. Droplet-based immunoassay on a ‘sticky’ nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron. 2015;67:560–9.

    Article  CAS  Google Scholar 

  103. Kong Y, Yao H, Ren H, Subbian S, Cirillo SLG, Sacchettini JC, et al. Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci USA. 2010;107:12239–44.

    Article  CAS  Google Scholar 

  104. Haes AJ, Van Duyne RP. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn. 2004;4:527–37.

    Article  CAS  Google Scholar 

  105. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  106. Lokuge IS, Bohn PW. Voltage-tunable volume transitions in nanoscale films of poly(hydroxyethyl methacrylate) surfaces grafted onto gold. Langmuir. 2005;21:1979–85.

    Article  CAS  Google Scholar 

  107. Hall WP, Ngatia SN, Van Duyne RP. LSPR biosensor signal enhancement using nanoparticle–antibody conjugates. J Phys Chem C. 2011;115:1410–4.

    Article  CAS  Google Scholar 

  108. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122:9071–7.

    Article  CAS  Google Scholar 

  109. Li Y, Wark AW, Lee HJ, Corn RM. Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem. 2006;78:3158–64.

    Article  CAS  Google Scholar 

  110. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv. 2008;26(2):135–50.

    Article  CAS  Google Scholar 

  111. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011;23(6):690–718.

    Article  CAS  Google Scholar 

  112. Hulteen JC, Van Duyne RP. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol, A. 1995;13:1553–8.

    Article  Google Scholar 

  113. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B. 2000;104:10549–56.

    Article  CAS  Google Scholar 

  114. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124:10596–604.

    Article  CAS  Google Scholar 

  115. Guo L, Kim DH. LSPR biomolecular assay with high sensitivity induced by aptamer–antigen–antibody sandwich complex. Biosens Bioelectron. 2012;31(1):567–70.

    Article  CAS  Google Scholar 

  116. Yoo SM, Kim DK, Lee SY. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 2015;132:112–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Work in the authors’ laboratory described in this article was funded by the National Institute of Allergies and Infectious Diseases under Grant 1RO1AI113219-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Bohn.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Bohn, P.W. Optical Biosensing of Bacteria and Bacterial Communities. J. Anal. Test. 1, 4 (2017). https://doi.org/10.1007/s41664-017-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-017-0002-z

Keywords

Navigation