Skip to main content
Log in

Muon reconstruction with a convolutional neural network in the JUNO detector

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass ordering and measure neutrino oscillation parameters. A precise muon reconstruction is crucial to reduce one of the major backgrounds induced by cosmic muons.

Methods

This article proposes a novel muon reconstruction method based on convolutional neural network (CNN) models. In this method, the track information reconstructed by the top tracker is used for network training. The training dataset is augmented by applying a rotation to muon tracks to compensate for the limited angular coverage of the top tracker.

Result

The muon reconstruction with the CNN model can produce unbiased tracks with performance that spatial resolution is better than 10 cm and angular resolution is better than 0.6 \({^{\circ }}\). By using a GPU-accelerated implementation, a speedup factor of 100 compared to existing CPU techniques has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Djurcic et al., (JUNO Collaboration), arXiv:1508.07166

  2. C. Genster, M. Schever, L. Ludhova, M. Soiron, A. Stahl, C.Wiebusch, https://doi.org/10.1088/1748-0221/13/03/T03003. arXiv:1906.01912

  3. K. Zhang, M. He, W. Li, J. Xu, https://doi.org/10.1007/s41605-018-0040-8. arXiv:1803.10407

  4. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma et al., arXiv:1409.0575

  5. R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, in CVPR (2014)

  6. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in CVPR (2015)

  7. G. Kasieczka, T. Plehn, M. Russell, T. Schell, https://doi.org/10.1007/JHEP05(2017)006. arXiv:1701.08784

  8. P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, https://doi.org/10.1103/PhysRevD.93.094034. arXiv:1603.09349

  9. W. Bhimji, S.A. Farrell, T. Kurth, M. Paganini, Prabhat, E. Racah, https://doi.org/10.1088/1742-6596/1085/4/042034. arXiv:1711.03573

  10. A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle, https://doi.org/10.1088/1748-0221/11/09/P09001. arXiv:1604.01444

  11. X. Huang et al., offline data processing software for the JUNO experiment, in PoS ICHEP2016 (2017), p. 1051. https://doi.org/10.22323/1.282.1051

  12. T. Lin et al., [JUNO], J. Phys. Conf. Ser. 898(4), 042029 (2017). https://doi.org/10.1088/1742-6596/898/4/042029. arXiv:1702.05275 [physics.ins-det]

  13. J. Allison et al., Recent developments in geant4. NIM A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  14. V.A. Kudryavtsev, Comput. Phys. Commun. 180, 339–346 (2009) https://doi.org/10.1016/j.cpc.2008.10.013. arXiv:0810.4635 [physics.comp-ph]

  15. M. Guan, M.C. Chu, J. Cao, K.B. Luk, C. Yang, arXiv:1509.06176

  16. K.K. Pal, K.S. Sudeep, Preprocessing for image classification by convolutional neural networks (IEEE, 2016), pp. 1778–1781. https://doi.org/10.1109/RTEICT.2016.7808140

  17. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. ICLR 1, 5 (2015)

    Google Scholar 

  18. D. Scherer, A. Muller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in Proceedings of the International Conference on Artificial Neural Networks (ICANN), Thessaloniki, Greece, 15–18 September 2010 (Springer, 2010)

  19. E. Phaisangittisagul, An analysis of the regularization between L2 and dropout in single hidden layer neural network (IEEE, 2016), pp. 174–179

  20. M. Abadi, et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems (2015). arXiv:1603.04467

  21. Y. LeCun, L. Bottou, G.B. Orr, K.R. Müller, Neural Networks: Tricks of the Trade (Springer, Berlin, 1998)

    Google Scholar 

  22. X.X. Cao, W.D. Li, R.A. Briere, C.L. Liu, Z.P. Mao, S.J. Chen, Z.Y. Deng, K.L. He, X.T. Huang, B. Huang et al., Chin. Phys. C 34, 1852–1859 (2010). https://doi.org/10.1088/1674-1137/34/12/012

    Article  ADS  Google Scholar 

  23. F.H.K. dos Santos Tanaka, C. Aranha. Data augmentation using GANs (2019). arXiv:abs/1904.09135

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lin.

Additional information

Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA10010900) and NSFC (11805223)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, WD., Lin, T. et al. Muon reconstruction with a convolutional neural network in the JUNO detector. Radiat Detect Technol Methods 5, 364–372 (2021). https://doi.org/10.1007/s41605-021-00259-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00259-4

Keywords

Navigation