Skip to main content
Log in

Optimization of multi-reflection time-of-flight mass analyzer operating in in-trap-lift mode

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

We are building an MRTOF-MS (multi-reflection time-of-flight mass spectrometer) for isobaric separation for the Lanzhou Penning Trap. The potentials applied on the electrodes of our MRTOF mass analyzer operating in in-trap-lift mode have to be optimized to achieve a very high mass resolving power.

Methods

Our method to design and optimize an MRTOF mass analyzer has been updated to introduce constraints on the potentials, and this method now can be used to optimize the parameters of MRTOF-MS both operating in mirror-switching mode and in in-trap-lift mode. By using this method, the optimal potential parameters of the electrodes have been obtained for our MRTOF mass analyzer operating in the in-trap-lift mode.

Results and conclusion

With a beam size of 2.8 mm diameter and an initial average ion kinetic energy of 1500 eV, the maximal mass resolving power has been achieved to be \(3.2\times 10^4\) with a total TOF of 7.0 ms for an ion species of \(^{40}\)Ar\(^{1+}\). It can reach up to \(5.6\times 10^4\) for a beam size of 0.3 mm diameter. The simulation shows that the inaccuracy of the potentials applied on the outermost mirror electrodes M1–M2 must be less than 50 ppm or preferably 20 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.R. Plaß, T. Dickel, C. Scheidenberger, Multiple-reflection time-of-flight mass spectrometry. Int. J. Mass Spectrom. 349–350, 134–144 (2013)

    Article  Google Scholar 

  2. A. Piechaczek, V. Shchepunov, H.K. Carter et al., Development of a high resolution isobar separator for study of exotic decays. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4510–4514 (2008)

    Article  ADS  Google Scholar 

  3. P. Schury, K. Okada, S. Shchepunov et al., Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. Eur. Phys. J. A 42, 343–349 (2009)

    Article  ADS  Google Scholar 

  4. R.N. Wolf, F. Wienholtz, D. Atanasov et al., ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 349–350, 123–133 (2013)

    Article  Google Scholar 

  5. W.R. Plaß, T. Dickel, U. Czok et al., Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4560–4564 (2008)

    Article  ADS  Google Scholar 

  6. T.Y. Hirsh, N. Paul, M. Burkey et al., First operation and mass separation with the CARIBU MR-TOF. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 229–232 (2016)

    Article  ADS  Google Scholar 

  7. Y.L. Tian, Y.S. Wang, J.Y. Wang, X.H. Zhou, W.X. Huang, Designing a multi-reflection time-of-flight mass analyzer for LPT. Int. J. Mass Spectrom. 408, 28–32 (2016)

    Article  Google Scholar 

  8. J.W. Yoon, Y.-H. Park, S.J. Park, G.D. Kim, Y.K. Kim, Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility. EPJ Web Conf. 66, 11042 (2014)

    Article  Google Scholar 

  9. B.E. Schultz, J.M. Kelly, C. Nicoloff, J. Long, S. Ryan, M. Brodeur, Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 251–255 (2016)

    Article  ADS  Google Scholar 

  10. P. Chauveau, P. Delahaye, G. De France et al., PILGRIM, a multi-reflection time-of-flight mass spectrometer for Spiral2-S3 at GANIL. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 211–215 (2016)

    Article  ADS  Google Scholar 

  11. C. Jesch, T. Dickel, W.R. Plaß et al., The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF. Hyperfine Interact. 235, 97–106 (2015)

    Article  ADS  Google Scholar 

  12. R.N. Wolf, D. Beck, K. Blaum et al., Plumbing neutron stars to new depth with the binding energy of the exotic nuclide \(^{82}\)Zn. Phys. Rev. Lett. 110, 041101 (2013)

    Article  ADS  Google Scholar 

  13. F. Wienholtz, D. Beck, K. Blaum et al., Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346–349 (2013)

    Article  ADS  Google Scholar 

  14. M. Rosenbusch, P. Ascher, D. Atanasov et al., Probing the \(N=32\) shell closure below the magic proton number \(Z=20\): mass measurements of the exotic isotopes \(^{52,53}{K}\). Phys. Rev. Lett. 114, 202501 (2015)

    Article  ADS  Google Scholar 

  15. P. Schury, M. Wada, Y. Ito et al., First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions: toward identification of superheavy elements via mass spectroscopy. Phys. Rev. C 95, 011305 (2017)

    Article  ADS  Google Scholar 

  16. R.N. Wolf, G. Marx, M. Rosenbusch, L. Schweikhard, Static-mirror ion capture and time focusing for electrostatic ion-beam traps and multi-reflection time-of-flight mass analyzers by use of an in-trap potential lift. Int. J. Mass Spectrom. 313, 8–14 (2012)

    Article  Google Scholar 

  17. W.X. Huang, Y.L. Tian, J.Y. Wang et al., Status of Lanzhou Penning Trap for accurate mass measurements. Nucl. Instrum. Methods Phys. Res. Sect. B 317, 528–531 (2013)

    Article  ADS  Google Scholar 

  18. Y.S. Wang, Y.L. Tian, J.Y. Wang, X.H. Zhou, W.X. Huang, Design and optimization of a multi-reflection time-of-fight mass spectrometer for LPT. Nucl. Phys. Rev. 34, 624–629 (2017). (in Chinese)

    Google Scholar 

  19. N.E. Bradbury, R.A. Nielsen, Absolute values of the electron mobility in hydrogen. Phys. Rev. 49, 388–393 (1936)

    Article  ADS  Google Scholar 

  20. D.J. Manura, D.A. Dahl, SIMION 8.0/8.1 User Manual, Scientific Instrument Services, Inc., Idaho National Laboratory (2011)

  21. J. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. M.J. Box, A new method of constrained optimization and a comparison with other methods. Comput. J. 8, 42–52 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.A. Guin, Modification of the complex method of constrained optimization. Comput. J. 10, 416–417 (1968)

    Article  Google Scholar 

  24. F. Le Floc’h, Issues of Nelder-Mead simplex optimisation with constraints, January 2, 2012. Available at http://dx.doi.org/10.2139/ssrn.2097904

  25. H. Wollnik, A. Casares, An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors. Int. J. Mass Spectrom. 227, 217–222 (2003)

    Article  Google Scholar 

  26. B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, V.A. Zagulin, The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov. Phys. JETP 37, 45–48 (1973)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xue Huang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos: 11675224, 11405243, 11605268, 11735017), the Chinese Academy of Sciences (No. 113462KYSB20150026, QYZDJ-SSW-SLH041), and the National Basic Research Program of China (973 Program) (No. 2013CB834400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WX., Tian, YL., Wang, YS. et al. Optimization of multi-reflection time-of-flight mass analyzer operating in in-trap-lift mode. Radiat Detect Technol Methods 2, 1 (2018). https://doi.org/10.1007/s41605-017-0031-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-017-0031-1

Keywords

Navigation