Skip to main content
Log in

Contact metamorphism associated to the Penamacor–Monsanto granitic intrusion (Central Portugal): geochemical, isotopic and mineralogical features

  • Research paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Contact metamorphism related to Variscan and late-Variscan granitic plutons in the Iberian Peninsula is superimposed on medium-grade regional metamorphism, making it often difficult to evaluate per se the thermal effects due to those intrusions and explaining the paucity of scientific literature on the subject. An exhaustive set of geochemical, isotopic and mineralogical data on the contact-zone metasediments hosting the Penamacor–Monsanto granite (Central Iberian Zone, Portugal) provides a significant contribution to the characterization of low- to intermediate-grade contact metamorphism in geological contexts formerly affected by regional metamorphism. The metasediments hosting the Penamacor–Monsanto pluton belong to the extensive detrital sequence of the ante-Ordovician Schist-Greywacke Complex. Bulk geochemistry, oxygen isotope data and crystal-chemistry of key minerals from those contact-zone and neighbouring metasediments have made it possible to infer metamorphic conditions on the contact zone of this granitic intrusion, and to distinguish them from late boron-metasomatism at the exocontact. Mineral parageneses (muscovite + biotite + chlorite ± quartz ± plagioclase ± cordierite, in spotted-schists; biotite + chlorite ± quartz ± plagioclase (± cordierite), in hornfelses) and the composition of these coexisting mineral phases indicate that most of the contact rocks reached the biotite zone (or even the cordierite zone, in some cases), equivalent to upper greenschist – lower amphibolite metamorphic grade. The relatively narrow range of O-isotope temperatures estimated for the crystallization of the marginal granites (550–625 °C) explains the absence of significant effects of thermal flow anisotropy on the contact-zone rocks. Besides, textural, paragenetic, mineralogical, isotopic and geochemical nuances observed in hornfelses and spotted-schists seem mainly related to the local host-rock heterogeneities, rather than to thermal effects. The relatively low temperatures estimated for granitoid emplacement and their restricted isotopic and mineralogical impacts on the metasedimentary host-rocks account for the narrow metamorphic aureole associated with the Penamacor–Monsanto pluton, and suggest this massif may correspond to the outcropping tip of a larger granitic intrusion at depth.

Resumen

Las intrusions graníticas Varíscicas y tardivaríscicas de la Península Ibérica dieron lugar a un metamorfismo de contacto que afecta a un encajante previamente sometido a un metamorfismo regional de grado medio, lo que dificulta separar los efectos térmicos de aquellos regionales, y explica la escasez de estudios sobre el mismo. El estudio detallado de la zona de contacto entre el Granito de Penamacor-Monsanto (Zona Centro-Ibérica; Portugal) y su encajante metasedimentario mediante técnicas geoquímicas, mineralógicas e isotópicas supone una notable contribución al conocimiento y caracterización del metamorfismo de contacto de grados bajos a intermedios en contextos geológicos previamente afectados por metamorfismo regional. El encajante metasedimentario del Plutón de Penamacor-Monsanto es parte de la amplia secuencia detrítica ante-Ordovícia conocida como Complejo Esquisto-Grawackico. Datos geoquímicos de roca total y cristaloquímicos de los minerales más característicos, y relaciones isotópicas de oxígeno en la zona de contacto y metasedimentos aledaños permiten inferir las condiciones metamórficas en la zona de contacto de dicha intrusión, y diferenciarla de aquella afectada por metasomatismo tardío por B. La paragénesis mineral (muscovita + biotita + clorita ± cuarzo ± plagioclasa ± cordierita en los esquistos moteados; biotita + clorita ± cuarzo ± plagiclasa (± cordierita) en corneanas) y la composición de las fases minerales coexistentes indican que la mayoría de rocas del contacto alcanzaron la zona de la biotita (e incluso, en algunos casos, aquella de la cordierita), equivalente a la parte alta del grado metamórfico de los esquistos verdes, o a la parte baja de las anfibolitas. El rango relativamente pequeño de temperaturas de cristalización de los granitos marginales (550-625°C), calculado mediante isótopos de oxígeno, explica la carencia de anisotropías térmicas significativas en las rocas del contacto. Las sutiles diferencias texturales, paragenéticas, mineralógicas, isotópicas y geoquímicas en esquistos moteados y corneanas parecen relacionadas con heterogeneidades locales de los encajantes, y no con efectos térmicos diferenciados. Las temperaturas relativamente bajas estimadas durante la intrusión del granito de Penamacor-Monsanto, y el limitado efecto mineralógico e isotópico sobre el encajante metasedimentario, dan lugar a una aureola de contacto estrecha, y sugieren que este macizo puede corresponder al techo de una intrusión mayor en profundidad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ábalos, B., Carreras, J., Druguet, E., Viruete, J. E., Pugnaire, M. T. G., Alvarez, S. L., et al. (2002). Variscan and Pre-Variscan Tectonics. In W. Gibbons & M. T. Moreno (Eds.), The geology of Spain. London: Geological Society.

    Google Scholar 

  • Acciaioli, M. H., Santos, J. F., & Munhá, J. M. (2005). Ar-Ar dates for two different stages of the Variscan D3 recorded in metapelites of Serra da Freita (North - Central Portugal). Geophysical Research Abstracts, 7, 10076.

    Google Scholar 

  • Antunes, I. M. H. R., Neiva, A. M. R., Silva, M. M. V. G., & Corfu, F. (2009). The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos, 111, 168–185.

    Article  Google Scholar 

  • Azevedo, M.R., Valle Aguado, B., Nolan, J., Martins M., Medina J. (2005). Origin and emplacement of syn-orogenic Varsican granitoids in Iberia: the Beiras massif. In: Carosi R., Dias R., Lacopini D., Rosenbaum G. (Eds.), The southern Variscan belt, Journal of the Virtual Explorer, Electronic Edition, vol. 19, Paper 7.

  • Bea, F., Sanchez González de Herrero, J.G., Serrano Pinto, M. (1987). Una compilación geoquímica elementos mayores para los granitoides del macizo Hespérico. In: Bea et al. (Eds.), Geología de los granitoides y rocas asociadas del macizo Hespérico. Ed. Rueda, pp. 87-193.

  • Beetsma, J.J. (1995). The Late Proterozoic/Paleozoic and Hercynian cristal evolution of the Iberian Massif, N Portugal. PhD Thesis, Vrije University, Amsterdam.

  • Blamart, D. (1991). Les concentrations tungstifères et stannifères: caractérisation isotopique (H–O) des fluides minéralisateurs, sur l’exemple du gisement Sn–W de Walmes (Maroc central). Détermination de quelques fractionnements isotopiques (H–O) entre minéraux et eaux. Thèse de doctorat, Institut National Polytechnique de Lorraine.

  • Borthwick, J., & Harmon, R. S. (1982). A note regarding CIF3 as an alternative to Br F5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta, 46, 1665–1668.

    Article  Google Scholar 

  • Castro, A., Corretgé, L. G., Enrique, P., Martínez, F. J., Pascual, E., Lago, M., et al. (2002). Paleozoic Magmatism. In W. Gibbons & T. Moreno (Eds.), The geology of Spain (pp. 117–153). London: Geol. Soc. London.

    Google Scholar 

  • Cathelineau, M. (1988). Cation site occupancy in chlorites and illites as a function of temperatura. Clay Minerals, 23, 471–485.

    Article  Google Scholar 

  • Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43–52.

    Article  Google Scholar 

  • Conde, L.E.N., Rachinhas, P.C.R.S., Rabaça, T.J.L. (2000). Aspectos metalogenéticos da região de Castelo-Branco: parâmetros controladores das mineralizações e abordagem dos impactes ambientais associados. Dept. Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade de Coimbra. Relatório do Projecto Praxis XXI - 2/2.1/CTA/81/94. Cap. IV: Geologia Regional, 13–17.

  • De Caritat, P., Hutcheon, I., & Walshe, J. L. (1993). Chlorite geothermometry: a review. Clays and Clay Minerals, 41(2), 219–239.

    Article  Google Scholar 

  • Dias, G., Ferreira, N., Leterrier, J., & Pereira, E. (1998). Petrogénese de associações ácidas-básicas no contexto do plutonismo tardi-hercínico: o exemplo do maciço granítico de Celorico de Basto (Norte de Portugal). Comunicações do IGM, 84(1), B51–B54.

    Google Scholar 

  • Dowty, E. (1980). Crystal-chemical factors affecting the mobility of ions in minerals. American Mineralogist, 65, 174–182.

    Google Scholar 

  • Ernst, W. G. (1963). Significance of phengitic micas from low-grade schists. American Mineralogist, 48, 1357–1373.

    Google Scholar 

  • Evans, B. W., & Guidotti, C. V. (1966). The sillimanite-potash feldspar isograd in Western Maine, USA. Contributions to Mineralogy and Petrology, 12, 25–62.

    Article  Google Scholar 

  • Ferreira, N., Iglésias, M., Noronha, F., Pereira, E., Ribeiro, A., & Ribeiro, M. L. (1987). Granitóides da zona Centro-Ibérica e seu enquadramento geodinâmico. In F. Bea, A. Carmina, J. C. Gonzalo, M. L. Plaza, & J. M. L. Rodrigues (Eds.), Geologia de los granitoides y rocas asociadas del Macizo Hespérico (pp. 37–53). Madrid: Libro Homenage a L.C.G. Figueirola. Editorial Rueda.

    Google Scholar 

  • Ferreira Pinto, A.F. & Matos, C.A.R. (2000). Aspectos metalogenéticos da região de Castelo-Branco: parâmetros controladores das mineralizações e abordagem dos impactos ambientais associados. Dept. Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade de Coimbra. Relatório do Projecto Praxis XXI - 2/2.1/CTA/81/94. Cap. V: Alguns Aspectos da Petrologia, 18-50.

  • Gama Pereira, L. C. (1976). Notícia sobre o “Complexo Xisto-Grauváquico” entre Capinha e Penamacor. Memórias e Notícias, 82, 61–66. (Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra).

    Google Scholar 

  • Gutiérrz-Alonso, G., Fernández-Suárez, J., Jeffries, T. R., Johnston, S. T., Pastor-Galán, D., Murphy, J. B., et al. (2011). Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 30, 1–17.

    Google Scholar 

  • Henry, D. J. & Dutrow, B. L. (1996). Metamorphic tourmaline and its petrologic applications. In E. S. Grew & L. M. Anovitz (Eds.), Boron: Mineralogy, petrology and geochemistry. Mineral. Soc. Am. Rev. Mineral, chp 10 (vol. 33).

  • Henry, D. J., & Guidotti, C. V. (2002). Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87, 375–382.

    Article  Google Scholar 

  • Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90, 316–328.

    Article  Google Scholar 

  • Hoernes, S., Macleod-Kinsell, S., Harmon, R. S., Pattison, D. R. M., & Strong, D. F. (1991). Stable isotope geochemistry on the intrusive complex and its metamorphic aureole. In G. Voll, J. Topel, D. R. M. Pattison, & F. Seifert (Eds.), Equilibrium and kinetics in contact metamorphism: the Ballachulish Igneous Complex and its thermal aureole. Heidelberg: Springer.

    Google Scholar 

  • Ishikawa, Y., Sawaguchi, T., Iwaya, S., & Honuchi, M. (1976). Delineation of prospecting targets for kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Mining Geology, 26, 105–117. (in Japanese with English abstract).

    Google Scholar 

  • Johnson, S. E. (1992). Sequential porphyroblast growth during progressive deformation and low-P high-T (LPHT) metamorphism, Cooma Complex, Australia: the use of microstructural analysis in better understanding deformation and metamorphic histories. Tectonophysics, 214, 311–339.

    Article  Google Scholar 

  • London, D. (1999). Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles. European Journal of Mineralogy, 11, 253–262.

    Article  Google Scholar 

  • Miller, T., Baumgartner, L. P., Foster, C. T., & Venneman, T. W. (2004). Metastable prograde mineral reactions in contact aureoles. Geology, 32, 821–824.

    Article  Google Scholar 

  • Miyashiro, A. (1978). Metamorphism and metamorphic belts (p. 492). London: George, Allen & Unwin.

    Google Scholar 

  • Miyashiro, A. (1994). Metamorphic Petrology (p. 404). London: UCL Press.

    Google Scholar 

  • Nabelek, P. L. (1991). Stable isotope monitors. In D. M. Kerrick (Ed.), Contact metamorphism. Mineral. Soc. Am. Rev. Mineral, chp 9 (vol. 26, pp. 395–435). USA: Mineralogical Society of America.

  • Neiva, A. M. R., & Campos, T. F. C. (1992). Genesis of the zoned granitic pluton of Penamacor–Monsanto, Central Portugal. Memórias e Notícias. Memórias e Notícias, 114, 51–68. (Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra).

    Google Scholar 

  • Neiva, A. M. R., & Campos, T. F. C. (1993). The zoned granitic pluton of Penamacor–Monsanto, Central Portugal: hydrothermal alteration. Memórias e Notícias, 116, 21–47. (Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra).

    Google Scholar 

  • Neiva, A. M. R., Williams, I. S., Ramos, J. M., Gomes, M. E. P., Silva, M. M. V. G., & Antunes, I. M. H. R. (2009). Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos, 111, 186–202.

    Article  Google Scholar 

  • Oen, Y.S. (1970). Granite intrusion, folding and metamorphism in central northern Portugal. Bol. Geol. Minero, tomo LXXXI, fasc. II-III, 271–298.

  • Oliveira, J. T., Pereira, E., Ramalho, M., Antunes, M. T., & Monteiro, J. H. (1992). Carta Geológica de Portugal na escala 1/500 000 (5ª ed.). Lisboa: Serviços Geológicos de Portugal.

    Google Scholar 

  • Pattison, D. R. M. (1987). Variations in Mg/(Mg + Fe), F, and (Fe, Mg)Si = 2Al in pelitic mineralsin the Ballachulish thermal aureole, Scotland. American Mineralogist, 72, 255–272.

    Google Scholar 

  • Pattison, D. R. M. & Tracy, R. J. (1991). Phase equilibria and thermobarometry of metapelites. In D. M. Kerrick (Ed.), Contact metamorphism. Mineral. Soc. Am. Rev. Mineral., chp 4 (vol. 26, pp. 105–206). USA: Mineralogical Society of America.

  • Pesquera, A., Torres-Ruiz, J., García-Casco, A., & Gil-Crespo, P. P. (2013). Evaluating the controls on tourmaline formation in granitic systems: a case study on peraluminous granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3), 609–634.

    Article  Google Scholar 

  • Ramírez, J. A., & Grundvig, S. (2000). Causes of geochemical diversity in peraluminous granitic plutons: the Jalama pluton, Central-Iberian Zone (Spain and Portugal). Lithos, 50, 171–190.

    Article  Google Scholar 

  • Reavy, R. J. (1989). Structural controls on metamorphism and syn-tectonic magmatism: the Portuguese Hercynian collision belt. Journal of the Geological Society London, 146, 649–657.

    Article  Google Scholar 

  • Ribeiro da Costa, I., Antunes, I.M.H.R., Farinha Ramos, J.M., Recio, C., Barriga, F.J.A.S., Mourão, C., Guimarães, F., Ferreira, N. (2013). Aspectos petrográficos do metamorfismo de contacto associado ao plutão granítico de Penamacor-Monsanto. Comun. Geológicas, 100(1), 89–98. http://www.lneg.pt/iedt/unidades/16/paginas/26/30/141

  • Ribeiro da Costa, I., Mourão, C., Recio, C., Guimarães, F., Antunes, I. M. H. R., Farinha Ramos, J. M., et al. (2014). Tourmaline occurrences within the Penamacor–Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features. Contributions to Mineralogy and Petrology, 167(4), 993–1115.

    Article  Google Scholar 

  • Ribeiro, A., Quesada, C., & Dallmeyer, R. D. (1990). Geodynamic evolution of the Iberian Massif. In R. D. Dallmeyer & G. Martinez (Eds.), Pre-Mesozoic geology of Iberia (pp. 399–409). Berlin: Springer.

    Chapter  Google Scholar 

  • Savin, S. M., & Epstein, S. (1970). Oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 25–42.

    Article  Google Scholar 

  • Sharp, Z. (1990). A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 1353–1357.

    Article  Google Scholar 

  • Sheppard, S.M.F. (1986). Characterization and isotopic variations in natural waters. In: Valley, J.W., Taylor, H.P. and O’Neil, J.R. (eds.), Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy, 16, 165-183.

  • Shieh, Y. N. & Taylor, H. P. Jr. (1969). Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa Range, Nevada and other areas. Contributions to Mineralogy and Petrology, 20, 306–356.

    Article  Google Scholar 

  • Sousa, M. B. (1985). Perspectiva sobre os conhecimentos actuais do Complexo Xisto- Grauváquico de Portugal. Memórias e Noticias, 100, 1–16. (Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra).

    Google Scholar 

  • Taylor, H. P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6), 843–883.

    Article  Google Scholar 

  • Thompson, A. B. (1976). Mineral reactions in pelitic rocks, I and II. American Journal of Science, 276(401–424), 425–454.

    Article  Google Scholar 

  • Ugidos, J. M. (1990). Granites as a paradigm of genetic processes of granitic rocks: I-types vs S-types. In R. D. Dallmeyer & E. Martinez (Eds.), Pre-Mesozoic geology of Iberia (pp. 189–206). Berlin,: Springer-Verlag.

    Google Scholar 

  • Ugidos, J. M., Sánchez-Santos, J. M., Barba, P., & Valladares, M. I. (2010). Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian LeoneseZones (Spain): geochemical data and statistical results as evidence for a shared homogenised source area. Precambrian Research, 178, 51–58.

    Article  Google Scholar 

  • Valladares, I., Ugidos, J. M., & Recio, C. (1993). Criterios geoquímicos de correlación y posible área fuente de las pelitas del Precámbrico superior – Cámbrico inferior de la Zona Centro-Ibérica (Macizo Ibérico, España). Revista de la Sociedad Geológica de España, 6(1–2), 37–45.

    Google Scholar 

  • Vernon, R. H., & Clarke, G. L. (2008). Principles of metamorphic petrology (p. 446). Cambridge: Cambridge University Press.

    Google Scholar 

  • Villaseca, C., Merino, E., Oyarzun, R., Orejana, D., Pérez-Soba, C., & Chicharro, E. (2014). Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research, 178, 131–145.

    Article  Google Scholar 

  • Vindel, E., Chicharro, E., Villaseca, C., López-García, J. A., & Sánchez, V. (2014). Hydrothermal phosphate vein-type ores from the southern Central Iberian Zone, Spain: evidences for their relationship to granites and Neoproterozoic metasedimentary rocks. Ore Geology Reviews, 62, 143–155. https://doi.org/10.1016/j.oregeorev.2014.03.011.

    Article  Google Scholar 

  • Voll, G., Töpel, J., Pattison, D. R. M., & Seifert, F. (Eds.). (1991). Equilibrium and kinetics in contact metamorphism: the Ballachulish igneous complex and its aureole. Berlin: Springer-Verlag.

    Google Scholar 

  • White, A. J. R., & Chappell, B. W. (1988). Some supracrustal (S-type) granites of the Lachlan Fold Belt. The Royal Society of Edinburgh Earth Science, 79, 169–181.

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Worley, B., Powell, R., & Wilson, C. J. L. (1997). Crenulation cleavage formation: evolving diffusion, deformation and equilibrium mechanisms with increasing metamorphic grade. Journal of Structural Geology, 19(8), 121–1135.

    Article  Google Scholar 

  • Zheng, Y. F. (1993). Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247–263.

    Article  Google Scholar 

Download references

Acknowledgements

We are most grateful to Mr. Alberto Verde (GeoFCUL) who prepared the polished thin-sections used in this study. Dr. Narciso Ferreira (LNEG, S. Mamede de Infesta) generously provided very useful field information concerning contact-zone outcrops around the P–M pluton. Mr Felix García García (Univ. Salamanca) helped with stable isotope determinations.

Funding

Funding was provided by FCT—Fundação para a Ciência e Tecnologia, through project METMOB (PTDC/CTE-GIX/116204/2009)—“Elementar and isotopic mobility and diffusion in metamorphic minerals from granite contact aureoles”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Ribeiro da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 244 kb)

Supplementary material 2 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro da Costa, I., Antunes, I.M.H.R., Mourão, C. et al. Contact metamorphism associated to the Penamacor–Monsanto granitic intrusion (Central Portugal): geochemical, isotopic and mineralogical features. J Iber Geol 44, 335–353 (2018). https://doi.org/10.1007/s41513-018-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0050-x

Keywords

Palabras clave

Navigation