Skip to main content
Log in

The Role of Motion-Based Metaphors in Enhancing Mathematical Thought: a Perspective from Embodiment Theories of Cognition

  • Opinion
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Motion-based metaphors help explain a single, often a static, concept (e.g., number, mathematical function, limit of function, continuity of function) in terms of a human motion. In mathematics, many mathematical concepts, such as function and continuity, are described in terms of graphical representations. Although these graphical representations are static, they can be transformed into motion events and understood as motions by motion-based metaphors. This can be done by either using a hand gesture to depict the graphical representation of the target concept or by mentally simulating hand movements that depict the graphical representation. By employing these mechanisms, the motor system becomes engaged in the process of aiding the learner to understand static mathematical concepts (concepts that are defined in terms of non-moving mathematical objects), acting as a cognitive resource to ground and understand non-motion mathematical concepts. In this paper, we theorize that visual representations of mathematical concepts have varying degrees of what we term to be “motor strength” whereby, for example, curves of functions may be either strongly or weakly motoric depending on the degree to which they aid in the development of associated deep mathematical thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  • Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., & Alibali, M. W. (2020). The future of embodied design for mathematics teaching and learning. Frontiers in Education, 5, 147. https://doi.org/10.3389/feduc.2020.00147

    Article  Google Scholar 

  • Al-Azary, H., & Katz, A. N. (2021). Do metaphorical sharks bite? Simulation and abstraction in metaphor processing. Memory & Cognition, 49(3), 557–570. https://doi.org/10.3758/s13421-020-01109-2

    Article  Google Scholar 

  • Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286. https://doi.org/10.1080/10508406.2011.611446

    Article  Google Scholar 

  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Science, 15(11), 527–536.

    Article  Google Scholar 

  • Chen, I. H., Zhao, Q., Long, Y., Lu, Q., & Huang, C. R. (2019). Mandarin Chinese modality exclusivity norms. PLoS ONE, 14(2), 1–18. https://doi.org/10.1371/journal.pone.0211336

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell, L., & Lynott, D. (2012). Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition, 125(3), 452–456.

    Article  PubMed  Google Scholar 

  • Edwards, L. D., Moore-Russo, D., & Ferrara, F. (2014). Emerging perspectives on gesture and embodiment in mathematics. Charlotte: Information Age Information Age Publishing.

    Google Scholar 

  • Edwards, L. D. (2019). The body of/in proof: An embodied analysis of mathematical reasoning. In: Danesi M. (eds), Interdisciplinary Perspectives on Math Cognition: Mathematics in Mind. Springer, Cham. https://doi.org/10.1007/978-3-030-22537-7_6

  • Feldman, J., & Narayanan, S. (2004). Embodied meaning in a neural theory of language. Brain and Language, 89(2), 385–392.

    Article  PubMed  Google Scholar 

  • Filipović Đurđević, D. F., Popović Stijačić, M., & Karapandžić, J. (2016). A quest for sources of perceptual richness: Several candidates. In S.Halupka-Rešetar & S. Martínez-Ferreiro (Eds.), Studies in language and mind (pp. 187–238). Novi Sad, Serbia: Filozofski fakultet uNovom Sadu.

  • Gallese, V. (2003). The manifold nature of interpersonal relations: The quest for a common mechanism. Philosophical Transactions of the Royal Society of London, B, 358, 517–528.

    Article  Google Scholar 

  • Gallese, G., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479.

    Article  PubMed  Google Scholar 

  • Gibbs, R. W. (2006). Embodiment and cognitive science. New York: Cambridge University Press.

    Google Scholar 

  • Gibbs, R. W. (2013). Walking the walk while thinking about the talk: Embodied interpretation of metaphorical narratives. Journal of Psycholinguistic Research, 42(4), 363–378. https://doi.org/10.1007/s10936-012-9222-6

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.

    Google Scholar 

  • Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.

    Article  Google Scholar 

  • Glenberg, A. M., Satao, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G. (2008). Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology, 61(6), 905–919.

    Article  Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2008). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272.

    Article  Google Scholar 

  • Hall, R., & Nemirovsky, R. (2012). Introduction to the special issue: Modalities of body engagement in mathematical activity and learning. Journal of the Learning Sciences, 21(2), 207–215.

    Article  Google Scholar 

  • Hauk, O., & Tschentscher, N. (2013). The body of evidence: What can neuroscience tell us about embodied semantics? Frontiers in Psychology, 4, 1–14.

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Principles and Implications, 2, 24. https://doi.org/10.1186/s41235-017-0060-9

    Article  Google Scholar 

  • Khatin-Zadeh, O. (2021a). How does representational transformation enhance mathematical thinking? Axiomathes. https://doi.org/10.1007/s10516-021-09602-2

    Article  Google Scholar 

  • Khatin-Zadeh, O. (2021b). Psychological processes of perceiving implied motion in static images. Polish Psychological Bulletin, 52(4), 334–340. https://doi.org/10.24425/ppb.2021.139167

    Article  Google Scholar 

  • Khatin-Zadeh, O., Eskandari, Z., Cervera-Torres, S., Ruiz Fernández, S., Farzi, R., & Marmolejo-Ramos, F. (2021). The strong versions of embodied cognition: Three challenges faced. Psychology & Neuroscience, 14(1), 16–33.

    Article  Google Scholar 

  • Khatin-Zadeh, O., Yazdani-Fazlabadi, B., & Eskandari, Z. (2021). The grounding of mathematical concepts through fictive motion, gesture and the motor system. For the Learning of Mathematics, 41(3), 19–21.

    Google Scholar 

  • Khatin-Zadeh, O., Eskandari, Z. & Marmolejo-Ramos, F. (2022). Gestures enhance executive functions for the understating of mathematical concepts. Integrative Psychological and Behavioral Science, 56(1). https://doi.org/10.1007/s12124-022-09694-4.

  • Kiefer, M., & Pulvermüller, F. (2011). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825.

    Article  PubMed  Google Scholar 

  • Kim, C. Y., & Blake, R. (2007). Brain activity accompanying perception of implied motion in abstract paintings. Spatial Vision, 20(6), 545–560. https://doi.org/10.1163/156856807782758395

    Article  PubMed  Google Scholar 

  • Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12(1), 48–55. https://doi.org/10.1162/08989290051137594

    Article  PubMed  Google Scholar 

  • Lakoff, G. (2014). Mapping the brain’s metaphor circuitry: Metaphorical thought in everyday reason. Frontiers in Human Neuroscience, 8, 958. https://doi.org/10.3389/fnhum.2014.00958

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lakoff, G. (2008). The neural theory of metaphor. In Gibbs, R. W. Jr. (Ed.). The Cambridge handbook of metaphor and thought (pp. 17–38). Oxford: Oxford University Press. https://doi.org/10.1017/cbo9780511816802.003

  • Lambon-Ralph, M. A. (2013). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society, 369(1634), 1–11. 20120392–20120392. https://doi.org/10.1098/rstb.2012.0392

  • Langacker, R. W. (1999). Grammar and conceptualization. Berlin: Mouton de Gruyter.

    Book  Google Scholar 

  • Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19(4), 1492–1500.

    Article  PubMed  Google Scholar 

  • Longcamp, M., Hlushchuk, Y., & Hari, R. (2011). What differs in visual recognition of handwritten vs. printed letters? An fMRI study. Human Brain Mapping, 32(8), 1250–1259.

    Article  PubMed  Google Scholar 

  • Lorteije, J. A. M., Barraclough, N. E., Jellema, T., Raemaekers, M., Duijnhouwer, J., Xiao, D., Oram, M. W., Lankheet, M. J. M., Perrett, D. I., & van Wezel, R. J. A. (2011). Implied motion activation in cortical area MT can be explained by visual low-level features. Journal of Cognitive Neuroscience, 23(6), 1533–1548. https://doi.org/10.1162/jocn.2010.21533

    Article  PubMed  Google Scholar 

  • Lynott, D., Connell, L., Brysbaert, M., Brand, J., & Carney, J. (2019). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Method, 52(3), 1271–1291. https://doi.org/10.3758/s13428-019-01316-z

    Article  Google Scholar 

  • Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in Cognitive Science, 5(2), 299–316.

    Article  PubMed  Google Scholar 

  • Masson, M. E., Bub, D. N., & Warren, C. M. (2008). Kicking calculators: Contribution of embodied representations to sentence comprehension. Journal of Memory and Language, 59(3), 256–265.

    Article  Google Scholar 

  • Matlock, T. (2004). The conceptual motivation of fictive motion. In G. Radden & R. Dirven (Eds.), Motivation in Grammar (pp. 221–248). John Benjamins.

    Google Scholar 

  • Matlock, T. (2010). Abstract motion is no longer abstract. Language and Cognition, 2(2), 243–260.

    Article  Google Scholar 

  • Matsumoto, Y. (1996). Subjective motion and English and Japanese verbs. Cognitive Linguistics, 7(2), 183–226.

    Article  Google Scholar 

  • Miklashevsky, A. (2018). Perceptual experience norms for 506 Russian nouns: Modality rating, spatial localization, manipulability, imageability and other variables. Journal of Psycholinguistic Research, 47(3), 641–661.

    Article  PubMed  Google Scholar 

  • Mishra, R. (2009). Interaction of language and visual attention: Evidence from production and comprehension. Progress in Brain Research, 176, 277–292.

    Article  PubMed  Google Scholar 

  • Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical cognition: Promoting mathematical insight and proof using action and language. Cognitive Research: Principles and Implications, 2, 9. https://doi.org/10.1186/s41235-016-0040-5

    Article  Google Scholar 

  • Núñez, R., & Lakoff, G. (1998). What did Weierstrass really define? The cognitive structure of natural and δ-ε continuity. Mathematical Cognition, 4(2), 85–101.

    Article  Google Scholar 

  • Núñez, R. (2008). A fresh look at the foundations of mathematics. In A. Cienki & C. Müller (Eds.), Metaphor and Gesture (pp. 93–114). Amsterdam, The Netherlands: John Benjamins.

  • Osaka, N., Matsuyoshi, D., Ikeda, T., & Osaka, M. (2010). Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: An fMRI study of the impact of visual art. NeuroReport, 21(4), 264–267. https://doi.org/10.1097/wnr.0b013e328335b371

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582.

    Article  PubMed  Google Scholar 

  • Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70, 111–126.

    Article  Google Scholar 

  • Reed, E. S. (1996). Encountering the world. New York: Oxford University Press.

    Google Scholar 

  • Reys, R. E. (1972). Mathematics, multiple embodiment, and elementary teachers. The Arithmetic Teacher, 19(6), 489–493.

    Google Scholar 

  • Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain: How our minds share actions, emotions, and experience. Oxford: Oxford University Press.

    Google Scholar 

  • Rojo, A., & Valenzuela, J. (2003). Fictive motion in English and Spanish. International Journal of English Studies, 3(2), 123–150.

    Google Scholar 

  • Saygin, A. P., McCullough, S., Alac, M., & Emmorey, K. (2010). Modulation of BOLD response in motion sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience, 22(11), 2480–2490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sbriscia-Fioretti, B., Berchio, C., Freedberg, D., Gallese, V., & Umiltà, M. A. (2013). ERP modulation during observation of abstract paintings by Franz Kline. PLoS One, 8(10), e75241. https://doi.org/10.1371/journal.pone.0075241

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer, S. (2019). Embodiment helps children solve a spatial working memory task: Interactions with age and gender. Journal of Cognitive Enhancement, 3(2), 233–244. https://doi.org/10.1007/s41465-018-0081-4

    Article  Google Scholar 

  • Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E. T., Brammer, M., & David, A. S. (2000). The functional neuroanatomy of implicit-motion perception or representational momentum. Current Biology, 10(1), 16–22.

    Article  PubMed  Google Scholar 

  • Shapiro, L. (2019). Embodied Cognition. Oxford: Routledge.

    Book  Google Scholar 

  • Shvarts, A., Alberto, R., Bakker, A., Doorman, M., & Drijvers, P. (2021). Embodied instrumentation in learning mathematics as the genesis of a body-artifact functional system. Educational Studies in Mathematics, 107(3), 447–469. https://doi.org/10.1007/s10649-021-10053-0

    Article  Google Scholar 

  • Singer, M. A., Radinsky, J., & Goldman, S. R. (2008). The role of gesture in meaning construction. Discourse Processes, 45(4–5), 365–386.

    Article  Google Scholar 

  • Speed, L. J., & Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49, 2204–2218.

    Article  PubMed  Google Scholar 

  • Tall, D. (2011). Crystalline concepts in long-term mathematical invention and discovery. For the Learning of Mathematics, 31(1), 3–8.

    Google Scholar 

  • Talmy, L. (1996). Fictive motion in language and “ception.” In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and Space (pp. 211–276). MIT Press.

    Google Scholar 

  • Umilta’, M. A., Berchio, C., Sestito, M., Freedberg, D., & Gallese, V. (2012). Abstract art and cortical motor activation: An EEG study. Frontiers in Human Neuroscience, 6, 311. https://doi.org/10.3389/fnhum.2012.00311

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallentin, M., Lund, T. E., Østergaard, S., Østergaard, L., & Roepstorff, A. (2005). Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport, 16(6), 649–652.

    Article  PubMed  Google Scholar 

  • Wamain, Y., Tallet, J., Zanone, P. G., & Longcamp, M. (2012). Brain responses to handwritten and printed letters differentially depend on the activation state of the primary motor cortex. NeuroImage, 63(3), 1766–1773.

    Article  PubMed  Google Scholar 

  • Williams, A. L., & Wright, M. J. (2009). Static representations of speed and their neural correlates in human area MT/V5. NeuroReport, 20(16), 1466–1470. https://doi.org/10.1097/wnr.0b013e32833203c1

    Article  PubMed  Google Scholar 

  • Yang, J., & Shu, H. (2016). Involvement of the motor system in comprehension of non-literal action language: A meta-analysis study. Brain Topography, 29(1), 94–107. https://doi.org/10.1007/s10548-015-0427-5

    Article  PubMed  Google Scholar 

  • Yeo, A., Ledesma, I., Nathan, M. J., Alibali, M. W., & Breckinridge Church, R. (2017). Teachers’ gestures and students’ learning: Sometimes “hands off” is better. Cognitive. Research: Principles and Implications, 2, 41. https://doi.org/10.1186/s41235-017-0077-0

    Article  Google Scholar 

  • Zona, C. I., Raab, M., & Fischer, M. H. (2019). Embodied perspectives on behavioral cognitive enhancement. Journal of Cognitive Enhancement, 3(2), 144–160. https://doi.org/10.1007/s41465-018-0102-3

    Article  Google Scholar 

  • Zwaan, R. (2014). Embodiment and language comprehension: Reframing the discussion. Trends in Cognitive Sciences, 18(5), 229–234.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Arthur Glenberg for his insightful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Contributions

Omid Khatin-Zadeh wrote the first draft of the paper. Fernando Marmolejo-Ramos and Sven Trenholm commented on it and revised it.

Corresponding author

Correspondence to Omid Khatin-Zadeh.

Ethics declarations

Ethics Approval

This is a theoretical paper. Therefore, ethics approval is not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatin-Zadeh, O., Marmolejo-Ramos, F. & Trenholm, S. The Role of Motion-Based Metaphors in Enhancing Mathematical Thought: a Perspective from Embodiment Theories of Cognition. J Cogn Enhanc 6, 455–462 (2022). https://doi.org/10.1007/s41465-022-00247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-022-00247-6

Keywords

Navigation