Skip to main content
Log in

Simulation study of BESIII with stitched CMOS pixel detector using acts

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The reconstruction of the tracks of charged particles with high precision is crucial for HEP experiments to achieve their physics goals. The BESIII drift chamber, which is used as the tracking detector of the BESIII experiment, has suffered from aging effects resulting in degraded tracking performance after operation for approximately 15 years. To preserve and enhance the tracking performance of BESIII, one of the proposals is to add one layer of a thin cylindrical CMOS pixel sensor based on state-of-the-art stitching technology between the beam pipe and the drift chamber. The improvement in the tracking performance of BESIII with such an additional pixel detector compared to that with only the existing drift chamber was studied using the modern common tracking software acts, which provides a set of detector-agnostic and highly performant tracking algorithms that have demonstrated promising performance for a few high-energy physics and nuclear physics experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.13616 and https://cstr.cn/31253.11.sciencedb.13616.

Notes

  1. Suppose the wire has a direction of \(\textbf{w}\) and the track direction is \(\textbf{t}\) in the global coordinate frame, the x axis and y axis in the local coordinate frame of a line surface is \(\textbf{w} \times \textbf{t}\) and \(\textbf{w}\), respectively.

References

  1. M. Ablikim, Z.H. An, J.Z. Bai et al., Design and construction of the BESIII detector. Nucl. Instrum. Meth. A 614, 345–399 (2010). https://doi.org/10.1016/j.nima.2009.12.050

    Article  ADS  Google Scholar 

  2. C.Z. Yuan, S.L. Olsen, The BESIII physics programme. Nat. Rev. Phys. 1, 480–494 (2019). https://doi.org/10.1038/s42254-019-0082-y

    Article  Google Scholar 

  3. M. Ablikim, M.N. Achasov, P. Adlarson et al., Future physics programme of BESIII *. Chin. Phys. C 44, 040001 (2020). https://doi.org/10.1088/1674-1137/44/4/040001

    Article  ADS  Google Scholar 

  4. X.X. Cao, W.D. Li, C.L. Liu et al., Studies of dE/dx measurements with the BESIII. Chin. Phys. C 34, 1852 (2010). https://doi.org/10.1088/1674-1137/34/12/012

    Article  ADS  Google Scholar 

  5. M.Y. Dong, Q.L. Xiu, L.H. Wu et al., Aging effect in the BESIII drift chamber*. Chin. Phys. C 40, 016001 (2016). https://doi.org/10.1088/1674-1137/40/1/016001

    Article  ADS  Google Scholar 

  6. Y.J. Xie, Z.H. Qin, X.Y. Ma et al., Construction and cosmic-ray test of the new inner drift chamber for BESIII. Chin. Phys. C 40, 096003 (2016). https://doi.org/10.1088/1674-1137/40/9/096003

    Article  ADS  Google Scholar 

  7. A. Bortone, Development and operation of the CGEM Inner Tracker for the BESIII experiment. Nucl. Instrum. Meth. Phys. Res. Sect. A 1048, 167957 (2023). https://doi.org/10.1016/j.nima.2022.167957

    Article  Google Scholar 

  8. S. Bohndiek, A. Blue, J. Cabello et al., Characterization and testing of LAS: a prototype ‘large area sensor’ with performance characteristics suitable for medical imaging applications. IEEE Trans. Nucl. Sci. 56, 2938–2946 (2009). https://doi.org/10.1109/TNS.2009.2029575

    Article  ADS  Google Scholar 

  9. A. Konstantinidis, M. Szafraniec, R. Speller et al., The Dexela 2923 CMOS X-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Meth. Phys. Res. Sect. A 689, 12–21 (2012). https://doi.org/10.1016/j.nima.2012.06.024

    Article  ADS  Google Scholar 

  10. M. Farrier, T. Achterkirchen, G. Weckler et al., Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans. Electron Devices 56, 2623–2631 (2009). https://doi.org/10.1109/TED.2009.2031001

    Article  ADS  Google Scholar 

  11. G. Aglieri Rinella, Developments of stitched monolithic pixel sensors towards the ALICE ITS3. Nucl. Instrum. Meth. Phys. Res. Sect. A 1049, 168018 (2023). https://doi.org/10.1016/j.nima.2023.168018

  12. X. Ai, C. Allaire, N. Calace et al., A common tracking software project. Comput. Softw. Big Sci. 6, 8 (2022). https://doi.org/10.1007/s41781-021-00078-8

    Article  ADS  Google Scholar 

  13. ATLAS Collaboration, Software Performance of the ATLAS Track Reconstruction for LHC Run 3. Tech. rep., CERN, Geneva, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-012 (May 2021)

  14. H. Abreu, J. Anders, C. Antel et al., First direct observation of collider neutrinos with FASER at the LHC. Phys. Rev. Lett. 131, 031801 (2023). https://doi.org/10.1103/PhysRevLett.131.031801

    Article  ADS  Google Scholar 

  15. J.D. Osborn, A.D. Frawley, J. Huang et al., Implementation of ACTS into sPHENIX track reconstruction. Comput. Softw. Big Sci. 5, 23 (2021). https://doi.org/10.1007/s41781-021-00068-w

    Article  ADS  Google Scholar 

  16. X. Ai, X. Huang, Y. Liu, Implementation of ACTS for STCF track reconstruction. J. Instrument. 18, P07026 (2023). https://doi.org/10.1088/1748-0221/18/07/P07026

    Article  ADS  Google Scholar 

  17. BESIII Offline Software System. https://bes3.readthedocs.io/index.html

  18. A. Dorokhov, G. Bertolone, J. Baudot et al., High resistivity CMOS pixel sensors and their application to the STAR PXL detector. Nucl. Instrum. Meth. Phys. Res. Sect. A 650, 174–177 (2011). https://doi.org/10.1016/j.nima.2010.12.112

  19. G. Aglieri Rinella, The ALPIDE pixel sensor chip for the upgrade of the ALICE inner tracking system. Nucl. Instrum. Meth. Phys. Res. Sect. A 845, 583–587 (2017). https://doi.org/10.1016/j.nima.2016.05.016

  20. Y. Ji, sPHENIX Collaboration, Heavy flavor physics with the sphenix maps vertex tracker upgrade. Nucl. Phys. A 1005, 121792 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121792

  21. S. Dong, P. Yang, Y. Zhang et al., Design and characterisation of the JadePix-3 CMOS pixel sensor. Nucl. Instrum. Meth. Phys. Res. Sect. A 1048, 167967 (2023). https://doi.org/10.1016/j.nima.2022.167967

    Article  Google Scholar 

  22. M. Dong, X. Ju, X. Tian et al., Development of maps-based detector ladders for the besiii inner tracker upgrade. Nucl. Instrum. Meth. Phys. Res. Sect. A 924, 287–292 (2019).https://doi.org/10.1016/j.nima.2018.06.032

  23. K.X. Huang, Z.J. Li, Z. Qian et al., Method for detector description transformation to unity and application in besiii. Nucl. Sci. Tech. 33, 142 (2022). https://doi.org/10.1007/s41365-022-01133-8

    Article  Google Scholar 

  24. S. Jadach, B.F.L. Ward, Z. Was, Coherent exclusive exponentiation for precision Monte Carlo calculations. Phys. Rev. D 63, 113009 (2001). https://doi.org/10.1103/PhysRevD.63.113009

  25. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152–155 (2001). BEAUTY2000, Proceedings of the 7th International Conference on B-Physics at Hadron Machines. https://doi.org/10.1016/S0168-9002(01)00089-4

  26. Geometry Description Markup Language (GDML)., https://gdml.web.cern.ch/GDML

  27. S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Sect. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  28. Q.G. Liu, S.L. Zang, W.G. Li et al., Track reconstruction using the TSF method for the BESIII main drift chamber. Chin. Phys. C 32, 565 (2008). https://doi.org/10.1088/1674-1137/32/7/011

    Article  ADS  Google Scholar 

  29. Y. Zhang, X.Y. Zhang, W.D. Li et al., Pattern-matching track reconstruction for the BESIII main drift chamber. High Energy Phys. Nucl. Phys. 31, 570–575 (2007)

    Google Scholar 

  30. L.K. Jia, Z.P. Mao, W.D. Li et al., Study of low momentum track reconstruction for the BESIII main drift chamber. Chin. Phys. C 34, 1866 (2010). https://doi.org/10.1088/1674-1137/34/12/014

    Article  ADS  Google Scholar 

  31. J. Zhang, Y. Zhang, H.M. Liu et al., Low transversemomentum track reconstruction based on the Hough transform for the BESIII drift chamber. Radiation Detect. Technol. Methods 2, 20 (2018). https://doi.org/10.1007/s41605-018-0052-4

  32. C.L. Ma, Y. Zhang, Y. Yuan et al., An extended segment pattern dictionary for a pattern matching tracking algorithm at BESIII. Chin. Phys. C 37, 066202 (2013). https://doi.org/10.1088/1674-1137/37/6/066202

    Article  ADS  Google Scholar 

  33. J.K. Wang, Z.P. Mao, J.M. Bian et al., BESIII track fitting algorithm. Chin. Phys. C 33, 870 (2009). https://doi.org/10.1088/1674-1137/33/10/010

    Article  ADS  Google Scholar 

  34. R. Brun, A. Gheata, M. Gheata, The ROOT geometry package. Nucl. Instrum. Methods. Phys. Res. A 502, 676–680 (2003). https://doi.org/10.1016/S0168-9002(03)00541-2

    Article  ADS  Google Scholar 

  35. R. Frühwirth, A. Strandlie, Track Finding, (Springer International Publishing, Cham, 2021), pp. 81–102. https://doi.org/10.1007/978-3-030-65771-0_5

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and material preparation. The analysis was performed by Yi Liu, Guang-Yan Xiao and Ya-Xuan Li. The first draft of the manuscript was written by Xiao-Cong Ai and Ling-Hui Wu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Cong Ai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U2032203, 12275296, 12275297, 12075142, 12175256, 12035009) and National Key R &D Program of China (No. 2020YFA0406302).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ai, XC., Xiao, GY. et al. Simulation study of BESIII with stitched CMOS pixel detector using acts. NUCL SCI TECH 34, 203 (2023). https://doi.org/10.1007/s41365-023-01353-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01353-6

Keywords

Navigation