Skip to main content
Log in

SPAGINS: semiempirical parameterization for fragments in gamma-induced nuclear spallation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

From the empirical phenomena of fragment distributions in nuclear spallation reactions, semiempirical formulas named SPAGINS were constructed to predict fragment cross-sections in high-energy \(\gamma\)-induced nuclear spallation reactions (PNSR). In constructing the SPAGINS formulas, theoretical models, including the TALYS toolkit, SPACS, and Rudstam formulas, were employed to study the general phenomenon of fragment distributions in PNSR with incident energies ranging from 100 to 1000 MeV. Considering the primary characteristics of PNSR, the SPAGINS formulas modify the EPAX and SPACS formulas and efficiently reproduce the measured data. The SPAGINS formulas provide a new and effective tool for predicting fragment production in PNSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00319 and https://cstr.cn/31253.11.sciencedb.j00186.00319.

References

  1. C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). https://doi.org/10.1016/j.ppnp.2018.01.002

    Article  ADS  Google Scholar 

  2. Q. Liu, Q. Normahmedov, M. Jing et al., Determination of cross-sections of natPb(p, x)207Bi and natPb(p, x) 194Hg by GeTHU. Nuclear Techniques 46, 090501 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.090501

    Article  Google Scholar 

  3. L. Liu, S. Niu, J. Zhu et al., Motion characteristics and laws of the debris from a near-space nuclear detonation. Nuclear Techniques (in Chinese) 45, 100503 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.100503

    Article  Google Scholar 

  4. S. Shibata, M. Imamura, T. Miyachi et al., Photonuclear spallation reactions in Cu. Phys. Rev. C 35, 254 (1987). https://doi.org/10.1103/PhysRevC.35.254

    Article  ADS  Google Scholar 

  5. K. Strauch, Recent studies of photonuclear reactions. Annu. Rev. Nucl. Sci. 2, 105 (1953). https://doi.org/10.1146/annurev.ns.02.120153.000541

    Article  ADS  Google Scholar 

  6. J.S. Levinger, Theories of photonuclear reactions. Annu. Rev. Nucl. Sci. 4, 1 (1954). https://doi.org/10.1146/annurev.ns.04.120154.000305

    Article  Google Scholar 

  7. F.R. Metzger, Resonance fluorescence in nuclei. Prog. Nucl. Phys. 7, 53 (1959)

    Google Scholar 

  8. M. Danos, E.G. Fuller, Photonuclear reactions. Annu. Rev. Nucl. Sci. 15, 29 (1965). https://doi.org/10.1146/annurev.ns.15.120165.000333

    Article  ADS  Google Scholar 

  9. U.E. Berg, U. Kneissl, Recent progress on nuclear magnetic dipole excitations. Annu. Rev. Nucl. Part. Sci. 37, 33 (1987). https://doi.org/10.1146/annurev.ns.37.120187.000341

    Article  ADS  Google Scholar 

  10. U. Kneissl, H.H. Pitz, A. Zilges, Investigation of nuclear structure by resonance fluorescence scattering. Prog. Part. Nucl. Phys. 37, 349 (1996). https://doi.org/10.1016/0146-6410(96)00055-5

    Article  ADS  Google Scholar 

  11. H.R. Weller, M.W. Ahmed, H. Gao et al., Research opportunities at the upgraded HIGS facility. Prog. Part. Nucl. Phys. 62, 257 (2009). https://doi.org/10.1016/j.ppnp.2008.07.001

    Article  ADS  Google Scholar 

  12. A. Zilges, D.L. Balabanski, J. Isaak et al., Photonuclear reactions-From basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903

    Article  Google Scholar 

  13. R.H. Milburn, Electron scattering by an intense polarized photon field. Phys. Rev. Lett. 10, 75 (1963). https://doi.org/10.1103/PhysRevLett.10.75

    Article  ADS  Google Scholar 

  14. F.R. Arutyunian, V.A. Tumanian, The Compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 4, 176 (1963)

    Article  ADS  Google Scholar 

  15. C. Bemporad, R.H. Milburn, N. Tanaka et al., High-energy photons from Compton scattering of light on 6.0-GeV electrons. Phys. Rev. 138, 1546 (1965). https://doi.org/10.1103/PhysRev.138.B1546

    Article  ADS  Google Scholar 

  16. H.W. Wang, G.T. Fan, L.X. Liu et al., Development and prospect of shanghai laser Compton scattering gamma source. Nucl. Phys. Rev. 37, 53 (2020). https://doi.org/10.11804/NuclPhysRev.37.2019043

    Article  Google Scholar 

  17. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  18. Y.W. Gong, M. Zhang, W.J. Fan et al., Beam performance of the SHINE dechirper. Nucl. Sci. Tech. 32, 29 (2021). https://doi.org/10.1007/s41365-021-00860-8

    Article  Google Scholar 

  19. N.S. Huang, Z.P. Liu, B.J. Deng et al., The MING proposal at SHINE: megahertz cavity enhanced X-ray generation. Nucl. Sci. Tech. 34, 6 (2023). https://doi.org/10.1007/s41365-022-01151-6

    Article  Google Scholar 

  20. S. Amano, K. Horikawa, K. Ishihara et al., Several-MeV gamma-ray generation at NewSUBARU by laser Compton backscattering. Nucl. Instrum. Methods Phys. Res. Sect. A 602, 337 (2009). https://doi.org/10.1016/j.nima.2009.01.010

    Article  ADS  Google Scholar 

  21. D. Habs, T. Tajima, V. Zamfir, Extreme light infrastructure-nuclear physics (ELI-NP): new horizons for photon physics in Europe. Nuclear Phys. News 21, 23 (2011). https://doi.org/10.1080/10619127.2010.529741

    Article  ADS  Google Scholar 

  22. A. Deppman, G.S. Karapetyan et al., Bremsstrahlung-induced fission and spallation of the pre-actinide nucleus \(^{181}{{\rm Ta}}\). Phys. Rev. C 91, 024620 (2015). https://doi.org/10.1103/PhysRevC.91.024620

    Article  ADS  Google Scholar 

  23. B. Mei, D.L. Balabanski et al., Empirical parametrization for production cross sections of neutron-rich nuclei by photofission of \(^{238}{{\rm U}}\) at low energies. Phys. Rev. C 96, 064610 (2017). https://doi.org/10.1103/PhysRevC.96.064610

    Article  ADS  Google Scholar 

  24. Guan-Lin. Wang, Hao-Yang. Lan et al., A general framework for describing photofission observables of actinides at an average excitation energy below 30 MeV. Chin. Phys. C 46, 084102 (2022). https://doi.org/10.1088/1674-1137/ac6abc

    Article  ADS  Google Scholar 

  25. G. Andersson, I. Blomqvist, B. Forkman et al., Photon-induced nuclear reactions above 1 GeV: (I). Experimental. Nucl. Phys. A 197, 44 (1972). https://doi.org/10.1016/0375-9474(72)90744-0

    Article  ADS  Google Scholar 

  26. G.G. Jonsson, K. Lindgren, Photon-induced nuclear reactions above 1 GeV: (I). Experimental. Phys. Scr. 7, 49 (1973). https://doi.org/10.1088/0031-8949/7/1-2/004

    Article  ADS  Google Scholar 

  27. K. Lindgren, G.G. Jonsson, Photon-induced nuclear reactions above 1 GeV: (II). Spallation reactions. Nucl. Phys. A 197, 71 (1972). https://doi.org/10.1016/0375-9474(72)90745-2

    Article  ADS  Google Scholar 

  28. G.G. Jonsson, B. Persson, High-energy photon induced spallation reactions in 127I. Nucl. Phys. A 153, 32 (1970). https://doi.org/10.1016/0375-9474(70)90755-4

    Article  ADS  Google Scholar 

  29. R. Serber, Nuclear reactions at high energies. Phys. Rev. 72, 1114 (1947). https://doi.org/10.1103/PhysRev.72.1114

    Article  ADS  Google Scholar 

  30. B. Bülow, B. Johnsson, M. Nilsson et al., Photospallation of 51V at intermediate energies. Zeitschrift für Physik A 278, 89 (1976). https://doi.org/10.1007/BF01547346

    Article  ADS  Google Scholar 

  31. G. Rudstam, The evaporation step in spallation reactions. Nucl. Phys. A 126, 401 (1969). https://doi.org/10.1016/0375-9474(69)90475-8

    Article  ADS  Google Scholar 

  32. M. Areskoug, B. Schrøder, K. Lindgren, Photofission in bismuth at intermediate energy. Nucl. Phys. A 251, 418 (1975). https://doi.org/10.1016/0375-9474(75)90538-2

    Article  ADS  Google Scholar 

  33. A. Koning, S. Hilaire, S. Goriely, User Manual of TALYS-1.96 (2021). https://doi.org/10.1051/ndata:07767

  34. O.S. Deiev, I.S. Timchenko, S.M. Olejnik et al., Cross-sections of photonuclear reactions \(^{65}\)Cu(\(^{65}\), n)\(^{64}\)Cu and \(^{63}\)Cu(\(\gamma\), xn)\(^{63?x}\)Cu in the energy range \(E_{\gamma \text{ max }}\) = 35–94 MeV. Chin. Phys. C 46, 124001 (2022). https://doi.org/10.1088/1674-1137/ac878a

    Article  ADS  Google Scholar 

  35. G.G. Jonsson, K. Lindgren, A complementary study of photospallation systematics. Phys. Scr. 15, 308 (1977). https://doi.org/10.1088/0031-8949/15/5-6/004

    Article  ADS  Google Scholar 

  36. G.G. Jonsson, K. Lindgren, Pion effects in \(^{127}\)I(\(\gamma\), xn) reactions of high multiplicity. Nucl. Phys. A 141, 355 (1970). https://doi.org/10.1016/0375-9474(70)90851-1

    Article  ADS  Google Scholar 

  37. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, ND 2007—International Conference on Nuclear Data for Science and Technology, April 22–27, Nice, France. ND2007:058 (2007). https://doi.org/10.1051/ndata:07767

  38. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  Google Scholar 

  39. D.G. Madland, Meeting on the nucleon-nucleus optical model up to 200 MeV. Bruyeres-le-Chatel, France, November 13–15 (1996). arXiv:nucl-th/9702048

  40. A. Koning, S. Hilarie, S. Goriely, Manual for TALYS 1.96, pp. 75–80

  41. G. Rudstam, Systematics of spallation yields. Zeitschrift für Naturforschung A 21, 1027 (1966). https://doi.org/10.1515/zna-1966-0724

    Article  ADS  Google Scholar 

  42. S.G. Rudstam, XLII. Spallation of elements in the mass range 51–75. Philos. Mag. J. Sci. 46, 344 (1955). https://doi.org/10.1080/14786440308521088

    Article  Google Scholar 

  43. R. Silberberg, C.H. Tsao, Partial cross-sections in high-energy nuclear reactions, and astrophysical applications I targets with z \(<= 28\). APJ Suppl. Ser. 25, 315 (1973). https://doi.org/10.1086/190271

    Article  ADS  Google Scholar 

  44. K. Sümmerer, B. Blank, Modified empirical parametrization of fragmentation cross sections. Phys. Rev. C 61, 034607 (2000). https://doi.org/10.1103/PhysRevC.61.034607

    Article  ADS  Google Scholar 

  45. K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). https://doi.org/10.1103/PhysRevC.86.014601

    Article  ADS  Google Scholar 

  46. C. Schmitt, K.-H. Schmidt, A. Kelić-Heil, SPACS: a semi-empirical parameterization for isotopic spallation cross sections. Phys. Rev. C 90, 064605 (2014). https://doi.org/10.1103/PhysRevC.90.064605

    Article  ADS  Google Scholar 

  47. C. Schmitt, K.-H. Schmidt, A. Kelić-Heil, Erratum: SPACS: a semi-empirical parameterization for isotopic spallation cross sections [Phys. Rev. C 90, 064605 (2014)]. Phys. Rev. C 94, 039901 (2016). https://link.aps.org/doi/10.1103/PhysRevC.94.039901

  48. K. Sümmerer, W. Brüchle, D.J. Morrissey et al., Target fragmentation of Au and Th by 2.6 GeV protons. Phys. Rev. C 42, 2546 (1990). https://doi.org/10.1103/PhysRevC.42.2546

    Article  ADS  Google Scholar 

  49. K. Sümmerer, Erratum: Improved empirical parametrization of fragmentation cross sections [Phys. Rev. C 86, 014601 (2012)]. Phys. Rev. C 87, 039903 (2013). https://link.aps.org/doi/10.1103/PhysRevC.87.039903

  50. R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Accurate universal parameterization of absorption cross sections. Nucl. Instrum. Methods Phys. Res. Sect. B 117, 347 (1996). https://doi.org/10.1016/0168-583X(96)00331-X

    Article  ADS  Google Scholar 

  51. R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Accurate universal parameterization of absorption cross sections II—neutron absorption cross sections. Nucl. Instrum. Methods Phys. Res. Sect. B 129, 11 (1997). https://doi.org/10.1016/S0168-583X(97)00121-3

    Article  ADS  Google Scholar 

  52. S.R. Sarkar, M. Soto, Y. Kubota, Photospallation of complex nuclei at intermediate energies. I. Radiochimica Acta 55, 113 (1991). https://doi.org/10.1524/ract.1991.55.3.113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hui-Ling Wei, Pu Jiao, Yu-Ting Wang, Jie Pu, Kai-Xuan Cheng, Ya-Fei Guo, Chun-Yuan Qiao, Gong-Tao Fan, Hong-Wei Wang, and Chun-Wang Ma. The first draft of the manuscript was written by Meng-Die Zhou, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Wang Ma.

Ethics declarations

Conflict of Interest

Chun-Wang Ma is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported by the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 21IRTSTHN011), China.

Appendices

Appendix I: SPAGINS formulas

Many SPACS and EPAX formulas are incorporated into the SPAGINS formulas. Owing to the definition of the individual parameters in the formula, SPAGINS adopts gamma quanta as the target. To present the SPAGINS formula more clearly, detailed formulas are provided in this section.

For a fragment with mass and charge numbers (AZ), the production cross-section in PNSR is

$$\begin{aligned} \sigma (A,Z)=\sigma _\text{R} Y(A) Y(Z_\text {prob}-Z)|_A. \end{aligned}$$
(11)

For the first term, the reaction cross-section is

$$\begin{aligned} \sigma _\text {R}=10 \pi r_0^2\left(A_\text {proj}^{\frac{1}{3}}+A_\text {tar}^{\frac{1}{3}}+\delta _\textrm{E}\right)^2(1-B/E_\text {cm})\chi _\text {m}, \end{aligned}$$
(12)

where \(r_0=\) 1.1 fm, and

$$\begin{aligned}{} & {} B=1.44 Z_\text {proj}Z_\text {tar}/H, \end{aligned}$$
(13)
$$\begin{aligned}{} & {} E_\text {cm}=E_\text {proj}A_\text {proj}/(A_\text {proj}+A_\text {tar}), \end{aligned}$$
(14)
$$\begin{aligned}{} & {} H=r_\text {proj}+r_\text {tar}+1.2\left( A_\text {proj}^{\frac{1}{3}}+A_\text {tar}^{\frac{1}{3}}\right) /E_\text {cm}^{\frac{1}{3}}. \end{aligned}$$
(15)

One can determine \(r_\text {proj}=1.29r_\text {proj}^\text {rms}\), and \(r_\text {proj}^\text {rms}=0.891A_\text {proj}^{\frac{1}{3}} \left( 1+5.565A_\text {proj}^{-\frac{2}{3}}-1.04A_\text {proj}^{-\frac{4}{3}}\right)\). \(r_\text {tar}^\text {rms}=\) 0.85.

$$\begin{aligned} \delta _\text {E}=1.85S+\left( 0.16S/E_\text {cm}^{\frac{1}{3}}\right) -C_\text {E}, \end{aligned}$$
(16)

where

$$\begin{aligned} S=A_\text {tar}^{\frac{1}{3}}A_\text {proj}^{\frac{1}{3}}/\left( A_\text {tar}^{\frac{1}{3}}+A_\text {proj}^{\frac{1}{3}}\right) , \end{aligned}$$
(17)

and

$$\begin{aligned}{} & {} C_\text {E}=2.05[1-\exp (-E_\text {proj}/40)-0.292\exp (-E_\text {proj}/792) \nonumber \\{} & {} \cos (0.229E_\text {proj}^{0.453})] \end{aligned}$$
(18)

For \(A_\text {proj}<\) 200,

$$\begin{aligned} \chi _\text{m}=1-\chi _\text{l}\exp [-E_\text {proj}/(\chi _\text{l} s_\text{l})], \end{aligned}$$
(19)

in which,

$$\begin{aligned} \chi _\text{l}=2.83-3.1\times 10^{-2}A_\text {proj}+1.7\times 10^{-4}A_\text {proj}^2, \end{aligned}$$
(20)

and

$$\begin{aligned}{} & {} s_\text{l}=0.6, \quad \text {for} \quad A_\text {proj}< 12, \end{aligned}$$
(21)
$$\begin{aligned}{} & {} s_\text{l}=1.6, \quad \text{for} \quad A_\text {proj}= 12, \end{aligned}$$
(22)
$$\begin{aligned}{} & {} s_\text{l}=1.0, \quad \text{for} \quad A_\text {proj}> 12. \end{aligned}$$
(23)

For the second term, the mass distribution considers the contributions from the central (\(Y(A)_\text {cent}\)) and peripheral collisions (\(Y(A)_\text {prph}\)),

$$\begin{aligned} Y(A)=Y(A)_\text {cent}+Y(A)_\text {prph}. \end{aligned}$$
(24)

When considering the incident energy dependence of the mass yield,

$$\begin{aligned} Y'(A)=G \cdot Y(A) \end{aligned}$$
(25)

where G is sorted into the following three regions:

$$\begin{aligned} G=\left\{ \begin{aligned}&10^{(E_\gamma -100)/100},&100 \le E_\gamma< 220; \\&10^{(E_\gamma -220)/300},&220 \le E_\gamma < 500; \\&10^{(E_\gamma -500)/2000},&500 \le E_\gamma \le 1000. \end{aligned} \right. \end{aligned}$$
(26)

The contribution of central collisions to a specific fragment cross-section is

$$\begin{aligned} Y(A)_\text {cent}= & {} (A_\text {length}/\{1+\exp [(A_\text {proj} -A_\text {cent}^{'} \nonumber \\{} & {} -A)/A_\text {cent-fluct}]\})/A_\text {cent}^{'}, \end{aligned}$$
(27)

where

$$\begin{aligned}{} & {} A_\text {cent}=\alpha _\text {cent}/\exp (A_\text {proj}/\beta _\text {cent}), \nonumber \\{} & {} A_\text {cent}^{'}=A_\text {proj}\{1-\exp [-\ln (A_\text {cent})(E_\text {proj}/1000)^{\epsilon _\text {cent}}]\}, \nonumber \\{} & {} A_\text {length}=1, \nonumber \\{} & {} A_\text {cent-fluct}=a_\text {fluct}A_\text {cent}^{\delta _\text {fluct}}(E_\text {proj}/1000)^{\epsilon _\text {cent}}, \nonumber \\{} & {} a_\text {fluct}=\alpha _\text {fluct}+\beta _\text {fluct}A_\text {proj}. \nonumber \end{aligned}$$

The contribution of peripheral collisions to a specific fragment cross-section is

$$\begin{aligned} Y(A)_\text {periph}= & {} A_\text {periph}\exp \{[A-(A_{\text {proj}-A_\text {diff}})]/A_\text {diff}\} \nonumber \\{} & {} \times (E_\text {proj}/1000)^{B_\text {periph}}/A_\text {cent}^{'}, \end{aligned}$$
(28)

where

$$\begin{aligned}{} & {} A_\text {periph}=\alpha _\text {periph}+\beta _\text {periph}A_\text {proj} \nonumber \\{} & {} A_\text {diff}=\alpha _\text {diff}+\beta _\text {diff}A_\text {proj} \nonumber \end{aligned}$$

The third term \(\sigma (A,Z)\) is parameterized by the number of neutron- and proton-rich fragments. For neutron-rich ones,

$$\begin{aligned} Y(Z_\text {prob}-Z)|_{A}=nf_\text{n}\exp (-R|{Z_\text {prob}}-Z|^{u_\text {n}}), \end{aligned}$$
(29)

and proton-rich

$$\begin{aligned} Y(Z_\text {prob}-Z)|_{A}=nf_\text{p}\exp (-R|{Z_\text {prob}}-Z|^{u_\text{p}}). \end{aligned}$$
(30)

\(Z_\text {prob}\) and \(Z_{\beta }\) take the form of

$$\begin{aligned}{} & {} Z_\text {prob}=Z_{\beta }+\Delta _\text {m}^\text {n,p}+0.002A+\Delta ^{'}, \end{aligned}$$
(31)
$$\begin{aligned}{} & {} Z_{\beta }=\frac{A}{1.98+0.0155A^{2/3}}. \end{aligned}$$
(32)

For a neutron-rich projectile,

$$\begin{aligned} \Delta _\text {m}^\text {n}= & {} \{n_1(A/A_\text {proj})^6+n_2[(A_\text {proj}-A)/A_\text {proj}]\}^2 \nonumber \\{} & {} \times (Z_\text {proj}-Z_{\beta \text {p}}), \end{aligned}$$
(33)

For proton-rich projectiles,

$$\begin{aligned} \Delta _\text {m}^\text {p}=[\exp (p_1+p_2A/A_\text {proj})](Z_\text {proj}-Z_{\beta \text {p}}), \end{aligned}$$
(34)

in which \(\Delta =\Delta _5A^2\), \(\Delta ^{'}=\Delta [1+d_1(A/A_\text {proj}-d_2)^2]\), \(n=\sqrt{R/\pi }\), and \(R=R_{0}^\text {n,p}R^\text {phy}\).

For neutron-rich spallation targets,

$$\begin{aligned} R_{0}^\text {n}=r_0\exp [r_3(Z_\text {proj}-Z_{\beta \text {p}})], \end{aligned}$$
(35)

For a proton-rich spallation target,

$$\begin{aligned} R_{0}^\text {p}=r_0\exp [r_4(Z_\text {proj}-Z_{\beta \text {p}})]. \end{aligned}$$
(36)

One also has,

$$\begin{aligned} R^\text {phy}=\exp \{-\ln [R_1(A/t_2)]\}. \end{aligned}$$
(37)

For neutron-rich fragments,

$$\begin{aligned} U^\text {n}=U_\text {n1}+U_\text {n2}A/A_\text {proj}, \end{aligned}$$
(38)

and proton-rich fragments.

$$\begin{aligned} U^\text {p}=U_\text {p1}+U_\text {p2}A_\text {proj}. \end{aligned}$$
(39)

The brute force factors \(f_\text {n}\) presented in Sect. 6.

Appendix II: brute force factor

The “brute force factor” in Eqs. (9) and (10) was parameterized according to the incident energy of the reaction and different ranges of fragment charge numbers. For the energy range of 100 MeV \(\le E_\gamma<\) 220 MeV, when \(Z\le 26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[-12+0.5(Z-1)]}\\&\qquad \times 10^{[0.5(29-Z_\text {proj})][5.575-0.175Z]}, \\&f_\text {n}=10^4\times 10^{[-23+(Z-1)]} \\&\qquad \times 10^{[0.5(29-Z_\text {proj})][4.7-0.1Z]} \\ \end{aligned} \end{aligned}$$
(40)

where

$$\begin{aligned} \begin{aligned}&\textrm{d}F/\textrm{d}Z=1.2+0.647(A/2)^{0.3}, \\&Z_\text {exp} =Z_\text {prob}+\textrm{d}F/\textrm{d}Z \ln (10)/(2R); \end{aligned} \end{aligned}$$
(41)

when \(Z>26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[-24+(Z-1)]},\\&f_\text {n}=10^4\times 10^{[-22.5+(Z-1)]}. \end{aligned} \end{aligned}$$
(42)

For the incident energy range of 220 MeV\(\le E_\gamma<\) 500 MeV, when the charge of the fragments \(Z\le 21\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[5.5-0.3(Z-1)]},\\&f_\text {n}=10^4\times 10^{[-15.5+0.75(Z-1)]}; \end{aligned} \end{aligned}$$
(43)

when \(21<Z\le 26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[-8.2+0.4(Z-1)]},\\&f_\text {n}=10^4\times 10^{[-12.6+0.6(Z-1)]}; \end{aligned} \end{aligned}$$
(44)

when \(Z>26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}} \times 10^{[-10+0.5(Z-1)]},\\&f_\text {n}=10^4\times 10^{[-27.7+1.2(Z-1)]}; \end{aligned} \end{aligned}$$
(45)

For the incident energy range of 500 MeV \(\le E_\gamma \le\) 1000 MeV, when \(Z\le 21\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[5.7-0.3(Z-1)]}\\&\qquad \times 10^{[0.5(29-Z_\text {proj})][2.2-0.1Z]}, \\&f_\text {n}=10^4\times 10^{[-19.6+0.6(Z-1)]} \\&\qquad \times 10^{[0.5(29-Z_\text {proj})][1.15-0.05Z]}; \\ \end{aligned} \end{aligned}$$
(46)

when \(21<Z\le 26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z- Z_\text {exp})}}\times 10^{[-7.4+0.4(Z-1)]} \\&\qquad \times 10^{[0.5(29-Z_\text{proj})][-2+0.1Z]}, \\&f_\text {n}=10^4\times 10^{[-9.5+0.5(Z-1)]} \\&\qquad \times 10^{[0.5(29-Z_\text{proj})][-1.9+0.1Z]}, \\ \end{aligned} \end{aligned}$$
(47)

and when \(Z>26\),

$$\begin{aligned} \begin{aligned}&f_\text {p}=\frac{1}{10^{(\textrm{d}F/\textrm{d}Z)(Z-Z_\text {exp})}}\times 10^{[-9.8+0.5(Z-1)]},\\&f_\text {n}=10^4\times 10^{[-14.2+0.7(Z-1)]}. \end{aligned} \end{aligned}$$
(48)

where parameters from Eqs. (3) to (48) can be found in Refs. [46, 47].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HL., Zhou, MD., Jiao, P. et al. SPAGINS: semiempirical parameterization for fragments in gamma-induced nuclear spallation. NUCL SCI TECH 34, 190 (2023). https://doi.org/10.1007/s41365-023-01342-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01342-9

Keywords

Navigation