Skip to main content
Log in

Two annular CsI(Tl) detector arrays for the charged particle telescopes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, we constructed two annular detector arrays comprising 24 wedge-shaped CsI(Tl) crystals, and tested them using an \(\alpha\) source and radioactive beams of \(^{14-16}\)C on a CD\(_2\) target. We compared the properties of a CsI(Tl) crystal encapsulated with various reflectors, revealing that using the 80-\(\upmu\)m-thick ESR film to pack the CsI(Tl) crystal yielded the largest light output with the smallest non-uniformity in light output (\(\Delta\)LO). For the 24 CsI(Tl) detectors with the 80-\(\upmu\)m-thick ESR films, the average energy resolution improved as the average light output increased; however, it deteriorated as the \(\Delta\)LO value increased. To form two annular Si-CsI(Tl) telescopes for identifying the light-charged particles, the \(\Delta\)LO value and energy resolution of each CsI(Tl) detector were maintained under 20% and 7.7%, respectively. These telescopes were tested for the first time in a direct nuclear reaction experiment using \(^{14-16}\)C + d. The results demonstrated that the Z = 1 and Z = 2 charged particles were adequately discriminated by the telescopes using the standard \(\Delta E\)-E method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00253 and https://cstr.cn/31253.11.

References

  1. B. Davin, R.T. de Souza, R. Yanez et al., LASSA: a large area silicon strip array for isotopic identification of charged particles. Nucl. Instrum. Methods Phys. Res. A 473, 302 (2001). https://doi.org/10.1016/S0168-9002(01)00295-9

    Article  ADS  Google Scholar 

  2. E. Pollacco, D. Beaumel, P. Roussel-Chomza et al., MUST2: A new generation array for direct reaction studies. Eur. Phys. J. A 25, 287 (2005). https://doi.org/10.1140/epjad/i2005-06-162-5

    Article  Google Scholar 

  3. L. Acosta, E.V. Pagano, T. Minniti et al., FARCOS, a new array for femtoscopy and correlation spectroscopy. EPJ Web. Conf. 31, 00035 (2012). https://doi.org/10.1051/epjconf/20123100035

    Article  Google Scholar 

  4. L. Acosta, R. Andolina, L. Auditore et al., Campaign of measurements to probe the good performance of the new array FARCOS for spectroscopy and correlations. J. Phys. Conf. Ser. 730, 012001 (2016). https://doi.org/10.1088/1742-6596/730/1/012001

    Article  Google Scholar 

  5. M.S. Wallace, M.A. Famiano, M.-J. van Goethem et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. A 583, 302 (2007). https://doi.org/10.1016/j.nima.2007.08.248

    Article  ADS  Google Scholar 

  6. D. Dell’Aquila, I. Lombardo, G. Verde et al., OSCAR: A new modular device for the identification and correlation of low energy particles. Nucl. Instrum. Methods Phys. Res. A 877, 227–237 (2018). https://doi.org/10.1016/j.nima.2017.09.046

    Article  ADS  Google Scholar 

  7. D. Dell’Aquila, S. Sweany, K.W. Brown et al., Non-linearity effects on the light-output calibration of light charged particles in CsI(Tl) scintillator crystals. Nucl. Instr. Meth. A 929, 162–172 (2019). https://doi.org/10.1016/j.nima.2019.03.065

    Article  ADS  Google Scholar 

  8. W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via a single nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020). https://doi.org/10.1007/s41365-020-0731-y

    Article  Google Scholar 

  9. G. Li, Z.W. Tan, J.L. Lou et al., Study on exotic structure of light neutron-rich nuclei via direct reaction. Nucl. Phys. Rev. 37, 426–437 (2020). https://doi.org/10.11804/NuclPhysRev.37.2019CNPC09. (in Chinese)

    Article  Google Scholar 

  10. J.L. Lou, Y.L. Ye, Z.H. Yang et al., Progress of exotic structure studies in light neutron-rich nuclei. Chin. Sci. Bull. 68, 1004–1015 (2023). https://doi.org/10.1360/TB-2022-0942

    Article  Google Scholar 

  11. J. Chen, J.L. Lou, Y.L. Ye et al., Low-lying states in 12Be using one-neutron transfer reaction. Phys. Rev. C 98, 014616 (2018). https://doi.org/10.1103/PhysRevC.98.014616

    Article  ADS  Google Scholar 

  12. J. Chen, J.L. Lou, Y.L. Ye et al., A new measurement of the intruder configuration in 12Be. Phys. Lett. B 781, 412–416 (2018). https://doi.org/10.1016/j.physletb.2018.04.016

    Article  ADS  Google Scholar 

  13. J. Chen, J.L. Lou, Y.L. Ye et al., Observation of the near-threshold intruder 0- resonance in 12Be. Phys. Rev. C 103, L031302 (2021). https://doi.org/10.1103/PhysRevC.103.L031302

    Article  ADS  Google Scholar 

  14. Y. Liu, Y.L. Ye, J.L. Lou et al., Positive-parity linear-chain molecular band in 16C. Phys. Rev. Lett. 124, 192501 (2020). https://doi.org/10.1103/PhysRevLett.124.192501

    Article  ADS  Google Scholar 

  15. Y. Jiang, J.L. Lou, Y.L. Ye et al., Quadrupole deformation of 16C studied by proton and deuteron inelastic scattering. Phys. Rev. C 101, 024601 (2020). https://doi.org/10.1103/PhysRevC.101.024601

    Article  ADS  Google Scholar 

  16. G. Li, J.L. Lou, Y.L. Ye et al., Property investigation of the wedge-shaped CsI(Tl) crystals for a charged-particle telescopes. Nucl. Instr. Meth. A 1013, 165637 (2021). https://doi.org/10.1016/j.nima.2021.165637

    Article  Google Scholar 

  17. W. Liu, J.L. Lou, Y.L. Ye et al., s- and d-wave intruder strengths in 13Bg.s. via the 1H(13B, d)12B reaction. Phys. Rev. C 104, 064605 (2021). https://doi.org/10.1103/PhysRevC.104.064605

    Article  ADS  Google Scholar 

  18. W. Liu, J.L. Lou, Y.L. Ye et al., New investigation of low-lying states in 12Be via a 2H(13B, 3He) reaction. Phys. Rev. C 105, 034613 (2022). https://doi.org/10.1103/PhysRevC.105.034613

    Article  ADS  Google Scholar 

  19. Z.W. Tan, J.L. Lou, Y.L. Ye et al., Investigation of negative-parity states in 16C via deuteron inelastic scatter. Chin. Phys. C 46, 054001 (2022). https://doi.org/10.1088/1674-1137/ac488b

    Article  ADS  Google Scholar 

  20. J.X. Han, Y. Liu, Y.L. Ye et al., Observation of the \(\Pi ^2\sigma ^2\)-bond linear-chain molecular structure in 16C. Phys. Rev. C 105, 044302 (2022). https://doi.org/10.1103/PhysRevC.105.044302

    Article  ADS  Google Scholar 

  21. Y. Sun, Z.Y. Sun, Y.H. Yu et al., Temperature dependence of CsI: Tl coupled to a PIN photodiode and silicon photomultiplier. Nucl. Sci. Tech. 30, 27 (2019). https://doi.org/10.1007/s41365-019-0551-0

    Article  Google Scholar 

  22. Hamamatsu Photonics S3584-08, www.hamamatsu.com/jp/en/product/type/S3584-08/index.html

  23. ORTEC 572A amplifier Manual. https://www.ortec-online.com.cn/products/electronics/amplifiers/572a

  24. L.Y. Ma, H. Hua, F. Lu et al., A CsI(T1) detector array used in the experiment of Proton-rich nucleus 17Ne. Chin. Phys. C (SupplB) 33, 176–178 (2009). https://doi.org/10.1088/1674-1137/33/S1/056

    Article  ADS  Google Scholar 

  25. Enhanced Specular Reflector Films, https://www.3m.com software

  26. M. Janecek, W.W. Moses, Optical reflectance measurements for commonly used reflectors. IEEE Trans. Nucl. Sci. 55, 2432–2437 (2008). https://doi.org/10.1109/TNS.2008.2001408

    Article  ADS  Google Scholar 

  27. M. Janecek, W.W. Moses, Simulating scintillator light collection using measured optical reflectance. IEEE Trans. Nucl. Sci. 57, 964–970 (2010). https://doi.org/10.1109/TNS.2010.2042731

    Article  ADS  Google Scholar 

  28. J. Bea, A. Gadea, L.M. Garcia-Raffi et al., Simulation of light collection in scintillators with rough surfaces. Nucl. Instrum. Methods Phys. Res. A 350, 184–191 (1994). https://doi.org/10.1016/0168-9002(94)91162-2

    Article  ADS  Google Scholar 

  29. A. Knyazev, J. Park, P. Golubev et al., Properties of the CsI (Tl) detector elements of the CALIFA detector. Nucl. Instrum. Methods Phys. Res. A 940, 393–404 (2019). https://doi.org/10.1016/j.nima.2019.06.045

    Article  ADS  Google Scholar 

  30. E. Auffray, F. Cavallari, M. Lebeau et al., Crystal conditioning for high-energy physics detectors. Nucl. Instrum. Methods Phys. Res. A 486, 22–34 (2002). https://doi.org/10.1016/S0168-9002(02)00670-8

    Article  ADS  Google Scholar 

  31. A. Knyazev, J. Park, P. Golubev et al., Tl concentration and its variation in a CsI(Tl) crystal for the CALIFA detector. Nucl. Instrum. Methods Phys. Res. A 975, 164197 (2020). https://doi.org/10.1016/j.nima.2020.164197

    Article  Google Scholar 

  32. Q. Liu, Y.L. Ye, Z.H. Li et al., Investigation of the thickness non-uniformity of very thin silicon strip etectors. Nucl. Instrum. Methods Phys. Res. A 897, 100–105 (2018). https://doi.org/10.1016/j.nima.2018.100

    Article  ADS  Google Scholar 

  33. R. Qiao, Y.L. Ye, J. Wang et al., A new uniform calibration method for double-sided silicon strip detectors. IEEE T. Nucl. Sci. 61, 596–601 (2014). https://doi.org/10.1109/TNS.2013.2295519

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hong-Yu Zhu, Jian-Ling Lou and Bo-Long Xia. The first draft of the manuscript was written by Jian-Ling Lou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-Ling Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos.12275007, U1867214, 11775004), the funding from the State Key Laboratory of Nuclear Physics and Technology, Peking University, China (No. NPT2021ZZ01) and funding from heavy Ion Research Facility, Lanzhou, China (No. HIR2021PY002).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HY., Lou, JL., Ye, YL. et al. Two annular CsI(Tl) detector arrays for the charged particle telescopes. NUCL SCI TECH 34, 159 (2023). https://doi.org/10.1007/s41365-023-01319-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01319-8

Keywords

Navigation