Skip to main content
Log in

Design of 50 MeV proton microbeam based on cyclotron accelerator

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

High-energy proton microbeam facilities are powerful tools in space science, biology and cancer therapy studies. The primary limitations of the 50 MeV proton microbeam system are the poor beam quality provided by the cyclotron and the problem of intense scattering in the slit position. Here, we present an optical design for a cyclotron-based 50 MeV high-energy proton microbeam system with a micron-sized resolution. The microbeam system, which has an Oxford triplet lens configuration, has relatively small spherical aberrations and is insensitive to changes in the beam divergence angle and momentum spread. In addition, the energy filtration included in the system can reduce the beam momentum spread from 1 to 0.02%. The effects of lens parasitic aberrations and the lens fringe field on the beam spot resolution are also discussed. In addition, owing to the severe scattering of 50 MeV protons in slit materials, a slit system model based on the Geant4 toolkit enables the quantitative analysis of scattered protons and secondary particles. For the slit system settings under a 10-micron final beam spot, very few scattered protons can enter the quadrupole lens system and affect the focusing performance of the microbeam system, but the secondary radiation of neutrons and gamma rays generated at the collimation system should be considered for the 50 MeV proton microbeam. These data demonstrate that a 50 MeV proton microbeam system with a micron-sized beam spot based on a cyclotron is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00078 and https://cstr.cn/31253.11.sciencedb.j00186.00078

References

  1. J.C. Chancellor, G.B. Scott, J.P. Sutton, Space radiation: the number one risk to astronaut health beyond low earth orbit. Life (Basel). 4, 491–510 (2014). https://doi.org/10.3390/life4030491

    Article  ADS  Google Scholar 

  2. A. Kronenberg, F.A. Cucinotta, Space radiation protection issues. Health Phys. 103, 556–567 (2012). https://doi.org/10.1097/HP.0b013e3182690caf

    Article  Google Scholar 

  3. G.D. Badhwar, P.M. O’Neill, Long-term modulation of galactic cosmic radiation and its model for space exploration. Adv. Space Res. 14, 749–757 (1994). https://doi.org/10.1016/0273-1177(94)90537-1

    Article  ADS  Google Scholar 

  4. F.A. Cucinotta, H. Nikjoo, D.T. Goodhead, The effects of delta rays on the number of particle-track traversals per cell in laboratory and space exposures. Radiat. Res. 150, 115–119 (1998). https://doi.org/10.2307/3579651

    Article  ADS  Google Scholar 

  5. L.W. Townsend, F.A. Cucinotta, J.W. Wilson et al., Estimates of HZE particle contributions to SPE radiation exposures on interplanetary missions. Adv. Space Res. 14, 671–674 (1994). https://doi.org/10.1016/0273-1177(94)90524-X

    Article  ADS  Google Scholar 

  6. J.A. Cookson, F.D. Pilling, The use of focused ion beams for analysis. Thin Solid Films 19, 381–385 (1973). https://doi.org/10.1016/0040-6090(73)90074-6

    Article  ADS  Google Scholar 

  7. J.A. van Kan, A.A. Bettiol, F. Watt, Three-dimensional nanolithography using proton beam writing. Appl. Phys. Lett. 83, 1629–1631 (2003). https://doi.org/10.1063/1.1604468

    Article  ADS  Google Scholar 

  8. F. Watt, M.B.H. Breese, A.A. Bettiol et al., Proton beam writing. Mater. Today. 10, 20–29 (2007). https://doi.org/10.1016/S1369-7021(07)70129-3

    Article  Google Scholar 

  9. P. Barberet, H. Seznec, Advances in microbeam technologies and applications to radiation biology. Radiat. Prot. Dosim. 166, 182–187 (2015). https://doi.org/10.1093/rpd/ncv192

    Article  Google Scholar 

  10. K.-D. Greif, H.J. Brede, D. Frankenberg et al., The PTB single ion microbeam for irradiation of living cells. Nucl. Instrum. Methods B 217, 505–512 (2004). https://doi.org/10.1016/j.nimb.2003.11.082

    Article  ADS  Google Scholar 

  11. C. Siebenwirth, C. Greubel, S.E. Drexler et al., Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE. Nucl. Instrum. Methods B 348, 137–142 (2015). https://doi.org/10.1016/j.nimb.2015.01.064

    Article  ADS  Google Scholar 

  12. G.H. Du, J.L. Guo, R.Q. Wu et al., The first interdisciplinary experiments at the IMP high energy microbeam. Nucl. Instrum. Methods B 348, 18–22 (2015). https://doi.org/10.1016/j.nimb.2015.01.066

    Article  ADS  Google Scholar 

  13. C. Greubel, W. Assmann, C. Burgdorf et al., Scanning irradiation device for mice in vivo with pulsed and continuous proton beams. Radiat. Environ. Biophys. 50, 339–344 (2011). https://doi.org/10.1007/s00411-011-0365-x

    Article  Google Scholar 

  14. W. Lijun, W. Shaohu, Y. Zengliang, T.K. Hei, G. Rander-Pehrson, Columbia University microbeam: development of an experimental system for targeting cells individually with counted particles. Nucl. Sci. Tech. 10, 143–148 (1999)

    Google Scholar 

  15. F. Watt, X. Chen, C.B. Chen et al., Whole cell structural imaging at 20 nanometre resolutions using MeV ions. Nucl. Instrum. Methods B 306, 6–11 (2013). https://doi.org/10.1016/j.nimb.2012.11.047

    Article  ADS  Google Scholar 

  16. W.-T. Yang, X.-C. Du, Y.-H. Li et al., Single-event-effect propagation investigation on nanoscale system on chip by applying heavy-ion microbeam and event tree analysis. Nucl. Sci. Tech. 32, 106 (2021). https://doi.org/10.1007/s41365-021-00943-6

    Article  Google Scholar 

  17. Y.-Q. Yang, W.-C. Fang, X.-X. Huang et al., Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy. Nucl. Sci. Tech. 34, 11 (2023). https://doi.org/10.1007/s41365-022-01163-2

    Article  Google Scholar 

  18. H. Zhang, J.-Z. Li, R. Hou et al., Design and development of an ACCT for the Shanghai advanced proton therapy facility. Nucl. Sci. Tech. 33, 126 (2022). https://doi.org/10.1007/s41365-022-01106-x

    Article  Google Scholar 

  19. X.-S. Sun, Y.-J. Li, J.-Y. Liu et al., Shortening the delivery time of proton therapy by real-time compensation method with raster scanning. Nucl. Sci. Tech. 33, 73 (2022). https://doi.org/10.1007/s41365-022-01051-9

    Article  Google Scholar 

  20. B. Qin, X. Liu, Q.-S. Chen et al., Design and development of the beamline for a proton therapy system. Nucl Sci Tech. 32, 138 (2021). https://doi.org/10.1007/s41365-021-00975-y

    Article  Google Scholar 

  21. C.G. Ren, S.J. Zhou, J.M. Che et al., A microbeam system of high energy ions at Fudan university. Nucl. Sci. Tech. 2, 13–18 (1991)

    Google Scholar 

  22. G. Datzmann, G. Dollinger, G. Hinderer et al., A superconducting multipole lens for focusing high energy ions. Nucl. Instrum. Methods B 158, 74–80 (1999). https://doi.org/10.1016/S0168-583X(99)00308-0

    Article  ADS  Google Scholar 

  23. J.S.C. Mckee, G.R. Smith, Y.H. Yeo et al., The manitoba automated high-energy proton microprobe (MA-HEM) and its application to research in the geological and biological sciences. Nucl. Instrum. Methods B 40, 680–684 (1989). https://doi.org/10.1016/0168-583X(89)91074-4

    Article  ADS  Google Scholar 

  24. L.N. Sheng, M.T. Song, X.Q. Zhang et al., Design of the IMP microbeam irradiation system for 100 MeV/u heavy ions. Chin. Phys. C 33, 315 (2009). https://doi.org/10.1088/1674-1137/33/4/016

    Article  ADS  Google Scholar 

  25. A. Ponomarov, G.H. Du, J.L. Guo et al., Beam optics of upgraded high energy heavy ion microbeam in Lanzhou. Nucl. Instrum. Methods B 461, 10–15 (2019). https://doi.org/10.1016/j.nimb.2019.09.002

    Article  ADS  Google Scholar 

  26. T. Vallentin, M. Moser, S. Eschbaumer et al., A microbeam slit system for high beam currents. Nucl. Instrum. Methods B 348, 43–47 (2015). https://doi.org/10.1016/j.nimb.2014.12.015

    Article  ADS  Google Scholar 

  27. M. Oikawa, T. Kamiya, M. Fukuda et al., Design of a focusing high-energy heavy ion microbeam system at the JAERI AVF cyclotron. Nucl. Instrum. Methods B 210, 54–58 (2003). https://doi.org/10.1016/S0168-583X(03)01007-3

    Article  ADS  Google Scholar 

  28. F. Watt, G.W. Grime, G.D. Blower et al., The Oxford 1 μm proton microprobe. Nucl. Instrum. Methods 197, 65–77 (1982). https://doi.org/10.1016/0167-5087(82)90119-3

    Article  ADS  Google Scholar 

  29. G.W. Grime, WinTRAX: A raytracing software package for the design of multipole focusing systems. Nucl. Instrum. Methods B 306, 76–80 (2013). https://doi.org/10.1016/j.nimb.2012.11.038

    Article  ADS  Google Scholar 

  30. F. Méot, The ray-tracing code Zgoubi. Nucl. Instrum. Methods A 427, 353–356 (1999). https://doi.org/10.1016/S0168-9002(98)01508-3

    Article  ADS  Google Scholar 

  31. F. Méot, The ray-tracing code Zgoubi–Status. Nucl. Instrum. Methods A 767, 112–125 (2014). https://doi.org/10.1016/j.nima.2014.07.022

    Article  ADS  Google Scholar 

  32. M.B.H. Breese, D.N. Jamieson, P.J.C. King, Material analysis using a nuclear microprobe. J. Microsc-Oxford. 189, 99–100 (1996). https://doi.org/10.1046/j.1365-2818.1998.0270c.x

    Article  Google Scholar 

  33. C.G. Ryan, PIXE and the nuclear microprobe: tools for quantitative imaging of complex natural materials. Nucl. Instrum. Methods B 269, 2151–2162 (2011). https://doi.org/10.1016/j.nimb.2011.02.046

    Article  ADS  Google Scholar 

  34. V. Brazhnik, A. Dymnikov, R. Hellborg et al., The effect of lens arrangement in a triplet and in a Russian quadruplet on the demagnification and beam current in a microprobe. Nucl. Instrum. Methods B 77, 29–34 (1993). https://doi.org/10.1016/0168-583X(93)95518-A

    Article  ADS  Google Scholar 

  35. Y.X. Dou, D.N. Jamieson, J.L. Liu et al., GEANT4 models for the secondary radiation flux in the collimation system of a 300MeV proton microbeam. Phys. Med. 32, 1841–1845 (2016). https://doi.org/10.1016/j.ejmp.2016.10.008

    Article  Google Scholar 

  36. G.W. Grime, F. Watt, G.D. Blower et al., Real and parasitic aberrations of quadrupole probe-forming systems. Nucl. Instrum. Methods. 197, 97–109 (1982). https://doi.org/10.1016/0167-5087(82)90123-5

    Article  ADS  Google Scholar 

  37. S. Incerti, P. Barberet, R. Villeneuve et al., Simulation of cellular irradiation with the CENBG microbeam line using GEANT4. IEEE Trans. Nucl. Sci. 51, 1395–1401 (2004). https://doi.org/10.1109/TNS.2004.832224

    Article  ADS  Google Scholar 

  38. L.N. Sheng, M.T. Song, X.Q. Zhang et al., High energy heavy ion microbeam irradiation facility at IMP. Nucl. Instrum. Methods B 269, 2189–2192 (2011). https://doi.org/10.1016/j.nimb.2011.02.075

    Article  ADS  Google Scholar 

  39. G.H. Du, Techniques and multi-disciplinary applications of ion microbeam. Nucl. Phys. Rev. 29, 371 (2012). https://doi.org/10.11804/NuclPhysRev.29.04.371

    Article  Google Scholar 

  40. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods B 268, 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  41. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge G.W. Grime (University of Surrey) for technical communication and for providing the computer software WinTRAX, and François Méot (Brookhaven National Laboratory) and D. N. Jamieson (The University of Melbourne) for providing the computer software Zgoubi and PRAM, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hong-Jin Mou, Guang-Bo Mao and Guang-Hua Du. The first draft of the manuscript was written by Hong-Jin Mou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guang-Hua Du.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 1197283 and U1632271) and the National Key R&D Program of China (No. 2021YFA1601400).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, HJ., Mao, GB., Zhang, JQ. et al. Design of 50 MeV proton microbeam based on cyclotron accelerator. NUCL SCI TECH 34, 92 (2023). https://doi.org/10.1007/s41365-023-01235-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01235-x

Keywords

Navigation