Skip to main content
Log in

Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Silver nanoclusters (AgNCs) are a new type of nanomaterials with similar properties to molecules and unique applications. The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites. Using irradiation techniques, we developed a simple two-step method for preparing silver nanocluster composites. First, polyacrylic acid (PAA) chains were grafted onto the surface of a PE film as templates (PE-g-PAA). Subsequently, silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites (AgNCs@PE-g-PAA). The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions. The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain. The particle size of the AgNCs was only 4.38 ± 0.85 nm, with a very uniform particle size distribution. The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs. The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr3+ ions. The composite can be used as a fluorescence test paper to realize visual detection of Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00070 and http://resolve.pid21.cn/31253.11.sciencedb.j00186.0007.

References

  1. C.-C. Hsu, Y.-Y. Chao, S.-W. Wang et al., Polyethylenimine-capped silver nanoclusters as fluorescent sensors for the rapid detection of ellagic acid in cosmetics. Talanta 204, 484–490 (2019). https://doi.org/10.1016/j.talanta.2019.06.047

    Article  Google Scholar 

  2. L. Lu, X. An, W. Huang, Quantitative determination of calcium ions by means of enhanced fluorescence of silver nanocluster complex. Anal. Methods 9, 23–27 (2017). https://doi.org/10.1039/C6AY02477G

    Article  Google Scholar 

  3. Y.R. Tang, Y. Zhang, Y.Y. Su et al., Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters. Talanta 115, 830–836 (2013). https://doi.org/10.1016/j.talanta.2013.06.028

    Article  Google Scholar 

  4. J. Yang, R.C. Jin, New advances in atomically precise silver nanoclusters. ACS Mater. Lett. 1, 482–489 (2019). https://doi.org/10.1021/acsmaterialslett.9b00246

    Article  Google Scholar 

  5. L. Shang, S.J. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–408 (2011). https://doi.org/10.1016/j.nantod.2011.06.004

    Article  Google Scholar 

  6. L.B. Zhang, E.K. Wang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014). https://doi.org/10.1016/j.nantod.2014.02.010

    Article  ADS  Google Scholar 

  7. H. Haidari, R. Bright, Z. Kopecki et al., Polycationic silver nanoclusters comprising nanoreservoirs of Ag+ Ions with high antimicrobial and antibiofilm activity. ACS Appl. Mater. Interfaces 14, 390–403 (2021). https://doi.org/10.1021/acsami.1c21657

    Article  Google Scholar 

  8. Y.M. Su, X.Y. Li, Z. Wang et al., Structural rearrangement of Ag-60 nanocluster endowing different luminescence performances. J. Chem. Phys. 155, 234303 (2021). https://doi.org/10.1063/5.0070138

    Article  ADS  Google Scholar 

  9. S. Ghosh, U. Anand, S. Mukherjee, Luminescent silver nanoclusters acting as a label-free photoswitch in metal ion sensing. Anal. Chem. 86, 3188–3194 (2014). https://doi.org/10.1021/ac500122v

    Article  Google Scholar 

  10. H. Chen, Y. Li, Y. Song et al., A sandwich-type electrochemical immunosensor based on spherical nucleic acids-templated Ag nanoclusters for ultrasensitive detection of tumor biomarker. Biosens. Bioelectron. 223, 115029 (2023). https://doi.org/10.1016/j.bios.2022.115029

    Article  Google Scholar 

  11. Y. Jiang, P. Miao, DNA dumbbell and chameleon silver nanoclusters for mirna logic operations. Research 2020, 1091605 (2020). https://doi.org/10.34133/2020/1091605

    Article  ADS  Google Scholar 

  12. K. Zheng, X. Yuan, N. Goswami et al., Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Adv. 4, 105 (2014). https://doi.org/10.1039/c4ra12054j

    Article  Google Scholar 

  13. S. Choi, Y. Zhao, J. Yu, Generation of luminescent silver nanodots in the presence of amino silane and sodium polyacrylate. J. Photochem. Photobiol. A Chem. 374, 36–42 (2019). https://doi.org/10.1016/j.jphotochem.2019.01.018

    Article  Google Scholar 

  14. Z. Shen, H.W. Duan, H. Frey, Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as “molecular hydrogel” templates. Adv. Mater. 19, 349–352 (2007). https://doi.org/10.1002/adma.200601740

    Article  Google Scholar 

  15. H.X. Xu, K.S. Suslick, Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4, 3209–3214 (2010). https://doi.org/10.1021/nn100987k

    Article  Google Scholar 

  16. J.V. Rojas, C.H. Castano, Radiation-assisted synthesis of iridium and rhodium nanoparticles supported on polyvinylpyrrolidone. J. Radioanal. Nucl. Chem. 302, 555–561 (2014). https://doi.org/10.1007/s10967-014-3291-y

    Article  Google Scholar 

  17. A.A. Zezin, D.I. Klimov, E.A. Zezina et al., Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: Principles, prospects and implications. Radiat. Phys. Chem. 169, 108076 (2020). https://doi.org/10.1016/j.radphyschem.2018.11.030

    Article  Google Scholar 

  18. S. Strohmaier, G. Zwierzchowski, Comparison of Co-60 and Ir-192 sources in HDR brachytherapy. J. Contemp. Brachytherapy 3, 199–208 (2011). https://doi.org/10.5114/jcb.2011.26471

    Article  Google Scholar 

  19. F. Han, J. Li, W. Wang et al., Synthesis of silver nanoclusters by irradiation reduction and detection of Cr(3+) ions. RSC Adv. 12, 33207–33214 (2022). https://doi.org/10.1039/d2ra06536c

    Article  ADS  Google Scholar 

  20. I. Diez, R.H.A. Ras, Fluorescent silver nanoclusters. Nanoscale 3, 1963–1970 (2011). https://doi.org/10.1039/c1nr00006c

    Article  ADS  Google Scholar 

  21. L.S. Ardekani, T.T. Moghadam, P.W. Thulstrup et al., Design and fabrication of a silver nanocluster-based aptasensor for lysozyme detection. Plasmonics 14, 1765–1774 (2019). https://doi.org/10.1007/s11468-019-00954-5

    Article  Google Scholar 

  22. Q.L. Wen, J. Peng, A.Y. Liu et al., DNA bioassays based on the fluorescence “turn off” of silver nanocluster beacon. Luminescence 35, 702–708 (2020). https://doi.org/10.1002/bio.3775

    Article  Google Scholar 

  23. D. Li, B. Li, G. Lee et al., Facile synthesis of fluorescent silver nanoclusters as simultaneous detection and remediation for Hg2+. Bull. Korean Chem. Soc. 36, 1703–1706 (2015). https://doi.org/10.1002/bkcs.10294

    Article  Google Scholar 

  24. J.H. Chen, X. Zhang, S.X. Cai et al., A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 57, 226–231 (2014). https://doi.org/10.1016/j.bios.2014.02.001

    Article  Google Scholar 

  25. Q. Qiu, R.R. Gao, A.M. Xie et al., A ratiometric fluorescent sensor with different DNA-templated Ag NCs as signals for ATP detection. J. Photochem. Photobiol. A Chem. 400, 112725 (2020). https://doi.org/10.1016/j.jphotochem.2020.112725

    Article  Google Scholar 

  26. D.T. Lu, Z. Chen, Y.F. Li et al., Determination of mercury(II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters. Anal. Lett. 48, 281–290 (2015). https://doi.org/10.1080/00032719.2014.940527

    Article  Google Scholar 

  27. J.H. Geng, C. Yao, X.H. Kou et al., A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv. Healthcare Mater. 7, 1700998 (2018). https://doi.org/10.1002/adhm.201700998

    Article  Google Scholar 

  28. Y.Y. Wang, S.S. Wang, C.S. Lu et al., Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sens. Actuator B Chem. 262, 9–16 (2018). https://doi.org/10.1016/j.snb.2018.01.235

    Article  Google Scholar 

  29. H. Oraby, M.M. Senna, M. Elsayed et al., Fabrication of reverse-osmosis membranes for the desalination of underground water via the gamma-radiation grafting of acrylic acid onto polyethylene films. J. Appl. Polym. Sci. 134, 45410 (2017). https://doi.org/10.1002/app.45410

    Article  Google Scholar 

  30. F.X. Sha, G.J. Cheng, Z.Y. Xuan et al., Free-radical evolution and decay in cross-linked polytetrafluoroethylene irradiated by gamma-rays. Nucl. Sci. Tech. 33, 62 (2022). https://doi.org/10.1007/s41365-022-01039-5

    Article  Google Scholar 

  31. F. Wang, Q.F. Wu, Y.R. Jiang et al., Effect of irradiation on temperature performance of dispersion-compensation no-core cascade optical-fiber sensor coated with polydimethylsiloxane film. Nucl. Sci. Tech. 33, 110 (2022). https://doi.org/10.1007/s41365-022-01100-3

    Article  Google Scholar 

  32. W. Liu, Y. Yu, Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environ. Technol. Innov. 23, 101644 (2021). https://doi.org/10.1016/j.eti.2021.101644

    Article  Google Scholar 

  33. R. Bencheikh-Latmani, A. Obraztsova, M.R. Machey et al., Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ. Sci. Technol. 41, 214–220 (2007). https://doi.org/10.1021/es0622655

    Article  ADS  Google Scholar 

  34. M. Chen, Y. Liu, H. Cao et al., The secondary and aggregation structural changes of BSA induced by trivalent chromium: a biophysical study. J. Luminesc. 158, 116–124 (2015). https://doi.org/10.1016/j.jlumin.2014.09.021

    Article  ADS  Google Scholar 

  35. J. Wang, N. Graham, K. Sun et al., Ultra-low concentrations of detection for fluoride and trivalent chromium ions by multiple biomimetic nanochannels in a PET membrane. J. Clean. Prod. 389, 136055 (2023). https://doi.org/10.1016/j.jclepro.2023.136055

    Article  Google Scholar 

  36. Y. Ye, H. Liu, L. Yang et al., Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale 4, 6442–6448 (2012). https://doi.org/10.1039/C2NR31985C

    Article  ADS  Google Scholar 

  37. S.H. Ren, S.G. Liu, Y. Ling et al., Fabrication of silver nanoclusters with enhanced fluorescence triggered by ethanol solvent: a selective fluorescent probe for Cr3+ detection. Anal. Bioanal. Chem. 411, 3301–3308 (2019). https://doi.org/10.1007/s00216-019-01796-0

    Article  Google Scholar 

  38. K.I. Kim, S.H. Oh, H.D. Kwen et al., Polymer-copper-modified MWNTs by radiation-induced graft polymerization and their efficient adsorption of odorous gases. J. Appl. Polym. Sci. 126, E64–E69 (2012). https://doi.org/10.1002/app.35453

    Article  Google Scholar 

  39. D.I. Klimov, E.A. Zezina, S.B. Zezin et al., Radiation-induced preparation of bimetallic nanoparticles in the films of interpolyelectrolyte complexes. Radiat. Phys. Chem. 142, 65–69 (2018). https://doi.org/10.1016/j.radphyschem.2017.02.034

    Article  ADS  Google Scholar 

  40. J.Y. He, X. Shang, C.L. Yang et al., Antibody-responsive ratiometric fluorescence biosensing of biemissive silver nanoclusters wrapped in switchable DNA tweezers. Anal. Chem. 93, 11634–11640 (2021). https://doi.org/10.1021/acs.analchem.1c02444

    Article  Google Scholar 

  41. S. Jin, W. Liu, D.Q. Hu et al., Aggregation-induced emission (AIE) in Ag–Au bimetallic nanocluster. Chem. Eur. J. 24, 3715 (2018). https://doi.org/10.1002/chem.201800189

    Article  Google Scholar 

  42. M. Ma, S. Zhu, Grafting polyelectrolytes onto polyacrylamide for flocculation—1. Polymer synthesis and characterization. Colloid Polym. Sci. 277, 115–122 (1999). https://doi.org/10.1007/s003960050375

    Article  Google Scholar 

  43. M.N.Z. Abidin, M.M. Nasef, T. Matsuura, Fouling prevention in polymeric membranes by radiation induced graft copolymerization. Polym. Basel 14, 197 (2022). https://doi.org/10.3390/polym14010197

    Article  Google Scholar 

  44. L. Shang, S.J. Dong, Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun. 2008, 1088–1090 (2008). https://doi.org/10.1039/b717728c

    Article  Google Scholar 

  45. L.G. Wang, X.G. Zhang, S.F. Hou et al., Preparation and characterization of hydrophilic PVDF membrane via graft modification by acrylic acid. Adv. Mater. Res. 306307, 1563–1568 (2011). https://doi.org/10.4028/www.scientific.net/AMR.306-307.1563

    Article  Google Scholar 

  46. Y.L. Li, W.Y. Xi, I. Hussain et al., Facile preparation of silver nanocluster self-assemblies with aggregation-induced emission by equilibrium shifting. Nanoscale 13, 14207–14213 (2021). https://doi.org/10.1039/d1nr03445f

    Article  Google Scholar 

  47. S.A. Cavaco, S. Fernandes, M.M. Quina et al., Removal of chromium from electroplating industry effluents by ion exchange resins. J. Hazard Mater. 144, 634–638 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.087

    Article  Google Scholar 

  48. M. Chen, H.-H. Cai, F. Yang et al., Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 118, 776–781 (2014). https://doi.org/10.1016/j.saa.2013.09.058

    Article  ADS  Google Scholar 

  49. W.-H. Chen, S.-Y. Lin, C.-Y. Liu, Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 410, 25–35 (2000). https://doi.org/10.1016/S0003-2670(00)00713-3

    Article  Google Scholar 

  50. J.P. Lafleur, E.D. Salin, Speciation of chromium by high-performance thin-layer chromatography with direct determination by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 80, 6821–6823 (2008). https://doi.org/10.1021/ac8010582

    Article  Google Scholar 

  51. J. Threeprom, S. Purachaka, L. Potipan, Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column. J. Chromatogr. A 1073, 291–295 (2005). https://doi.org/10.1016/j.chroma.2004.09.053

    Article  Google Scholar 

  52. R.M. Cespón-Romero, M.C. Yebra-Biurrun, M.P. Bermejo-Barrera, Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system. Anal. Chim. Acta 327, 37–45 (1996). https://doi.org/10.1016/0003-2670(96)00062-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fei Han, Wen-Rui Wang, Dan-Yi Li, Mou-Hua Wang and Ji-Hao Li. The first draft of the manuscript was written by Fei Han under the guidance of Lin-Fan Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ji-Hao Li or Lin-Fan Li.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

This work was supported by the Gansu Natural Science Foundation (Nos. 20JR10RA778 and 20JR10RA777).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3700 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Wang, WR., Li, DY. et al. Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+. NUCL SCI TECH 34, 73 (2023). https://doi.org/10.1007/s41365-023-01224-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01224-0

Keywords

Navigation