Skip to main content

Advertisement

Log in

Rapid diagnostic method for transplutonium isotope production in high flux reactors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Transplutonium isotopes are scarce and need to be produced by irradiation in high flux reactors. However, their production is inefficient, and optimization studies are necessary. This study analyzes the physical nature of transplutonium isotope production using 252Cf, 244Cm, 242Cm, and 238Pu as examples. Traditional methods based on the Monte Carlo burnup calculation have the limitations of many calculations and cannot analyze the individual energy intervals in detail; thus, they cannot support the refined evaluation, screening, and optimization of the irradiation schemes. After understanding the physical nature and simplifying the complexity of the production process, we propose a rapid diagnostic method for evaluating radiation schemes based on the concepts “single energy interval value (SEIV)” and “energy spectrum total value (ESTV)”. The rapid diagnostic method not only avoids tedious burnup calculations, but also provides a direction for optimization. The optimal irradiation schemes for producing 252Cf, 244Cm, 242Cm, and 238Pu are determined based on a rapid diagnostic method. Optimal irradiation schemes can significantly improve production efficiency. Compared with the initial scheme, the optimal scheme improved the production efficiency of 238Pu by 7.41 times; 242Cm, 11.98 times; 244Cm, 65.20 times; and 252Cf, 15.08 times. Thus, a refined analysis of transplutonium isotope production is conducted and provides a theoretical basis for improving production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00039 and https://cstr.cn/31253.11.sciencedb.j00186.00039.

References

  1. J. Bigelow, B. Corbett, L. King et al., Production of transplutonium elements in the high flux isotope reactor. ACS symposium series 161, in Transplutonium Elements-Production and Recovery. ed. by J.D. Navratil, W.W. Schulz (American Chemical Society, Washington, 1981), pp.3–18

    Chapter  Google Scholar 

  2. J. Even, X. Chen, A. Soylu et al., The NEXT project: towards production and investigation of neutron-rich heavy nuclides. Atoms 10, 59 (2022). https://doi.org/10.3390/atoms10020059

    Article  ADS  Google Scholar 

  3. T. Dickel, A. Kankainen, A. Spataru et al., Multi-nucleon transfer reactions at ion catcher facilities—a new way to produce and study heavy neutron-rich nuclei. J. Phys. Conf. Ser. 1668, 012012 (2020). https://doi.org/10.1088/1742-6596/1668/1/012012

    Article  Google Scholar 

  4. G. Savard, M. Brodeur, J. Clark et al., The N=126 factory: a new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Method Phys. Res. Sect. B 463, 258–261 (2020). https://doi.org/10.1016/j.nimb.2019.05.024

    Article  ADS  Google Scholar 

  5. Researchers urge action on medical-isotope shortage, Nature 459, 1045 (2009). https://doi.org/10.1038/4591045b

    Article  Google Scholar 

  6. J. Tollefson, Reactor shutdown threatens world’s medical-isotope supply. Nature (2016). https://doi.org/10.1038/nature.2016.20577

    Article  Google Scholar 

  7. P. Gould, Medical isotope supplies dwindle. Nature (2010). https://doi.org/10.1038/news.2010.70

    Article  Google Scholar 

  8. P. Gould, Medical isotope shortage reaches crisis level. Nature 460, 312–313 (2019). https://doi.org/10.1038/460312a

    Article  Google Scholar 

  9. S. Hogle, C.W. Alexander, J.D. Burns et al., Sensitivity studies and experimental evaluation for optimizing transcurium isotope production. Nucl. Sci. Eng. 185, 473–483 (2017). https://doi.org/10.1080/00295639.2016.1272973

    Article  ADS  Google Scholar 

  10. T. Tacev, B. Ptackova, V. Stmad, 252Cf versus conventional gamma radiation in the brachytherapy of advanced cervical carcinoma. Strahlenther. Onkol. 179, 379–384 (2003). https://doi.org/10.1007/s00066-003-1005-4

    Article  Google Scholar 

  11. M. Yu, S. Wang, The investigation and calculation of the transmutation paths for the production of 252Cf in fast reactors. Ann. Nucl. Energy 136, 107006 (2020). https://doi.org/10.1016/j.anucene.2019.107006

    Article  Google Scholar 

  12. R.C. Martin, J.B. Knauer, P.A. Balo, Production, distribution and application of Californium-252 neutron sources. Appl. Radiat. Isotopes 53, 785–792 (2000). https://doi.org/10.1016/S0969-8043(00)00214-1

    Article  Google Scholar 

  13. Z. Shen, X. Ouyang, H. Gao, Demand for aerospace materials and technology for China’s deep space exploration. Aerosp. Mater. Technol. 51(05), 1 (2021)

    Google Scholar 

  14. S. Hogle, Optimization of transcurium isotope production in the high flux isotope reactor. Doctoral dissertations at University of Tennessee, Knoxville, 2012. https://trace.tennessee.edu/utk_graddiss/1529/

  15. S. Thompson, A. Chiorso, G. Seaborg, The new element californium (atomic number 98). Phys. Rev. 77, 838 (1950). https://doi.org/10.1103/PhysRev.80.790

    Article  ADS  Google Scholar 

  16. P.R. Fields, M.H. Studier, H. Diamond et al., Transplutonium elements in thermonuclear test debris. Phys. Rev. 102, 180 (1956). https://doi.org/10.1103/PhysRev.102.180

    Article  ADS  Google Scholar 

  17. D. Schönenbach, F. Berg, M. Breckheimer et al., Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage. Anal. Bioanal. Chem. 413, 3987–3997 (2021). https://doi.org/10.1007/s00216-021-03350-3

    Article  Google Scholar 

  18. K. Dockx, E.C. Thomas, S. Thierry, ISOL technique for the production of 225 Ac at CERN-MEDICIS. J. Med. Imaging Radiat. Sci. 50(4), 92 (2019). https://doi.org/10.1016/j.jmir.2019.11.077

    Article  Google Scholar 

  19. P. Schmor, Review of cyclotrons for the production of radioactive isotopes for medical and industrial applications. Rev. Accel. Sci. Technol. 4, 103–116 (2011). https://doi.org/10.1142/9789814383998_0005

    Article  Google Scholar 

  20. Y.S. Lutostansky, V.I. Lyashuk, Production of transuranium nuclides in pulsed neutron fluxes from thermonuclear explosions. JETP Lett. 107, 79–85 (2018). https://doi.org/10.1134/S0021364018020108

    Article  ADS  Google Scholar 

  21. S. Hogle, G.I. Maldonado, C. Alexander, Increasing transcurium production efficiency through directed resonance shielding. Ann. Nucl. Energy 60, 267–273 (2013). https://doi.org/10.1016/j.anucene.2013.05.018

    Article  Google Scholar 

  22. Y. Hou, Analysis of the world supply market for californium-252 neutron source. China Nucl. Ind. 05, 24–26 (2015). (in Chinese)

    Google Scholar 

  23. S.M. Robinson, D.E. Benker, E.D. Collins et al., Production of 252Cf and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 108(9), 737–746 (2020). https://doi.org/10.1515/ract-2020-0008

    Article  Google Scholar 

  24. D. Chandler, B.R. Betzler, E.E. Davidson et al., Modeling and simulation of a high flux isotope reactor representative core model for updated performance and safety basis assessments. Nucl. Eng. Des. 366, 110752 (2020). https://doi.org/10.1016/j.nucengdes.2020.110752

    Article  Google Scholar 

  25. C. Samantha, H. Riley, Campaign 78 - production of 252Cf and the recovery of curium feed material at the Radiochemical Engineering Development Center, ORNL/TM-2020/1839, 2021. https://www.osti.gov/biblio/1782041

  26. G. Koehly, J. Bourges, C. Madic et al., The production of transplutonium elements in France. ACS Symp. Ser. 161, 19–40 (1981). https://doi.org/10.1021/bk-1981-0161.ch002

    Article  Google Scholar 

  27. Y.A. Karelin, Y.N. Gordeev, V.T. Filimonov et al., Radionuclide production at the Russia State scientific center, RIAR. Appl. Radiat. Isot. 48, 1585–1589 (1997). https://doi.org/10.1016/S0969-8043(97)00159-0

    Article  Google Scholar 

  28. A. Zhang, C. Yu, S. Xia et al., Analysis of producing 238Pu as a byproduct in an MSFR. Ann. Nucl. Energy 154, 108104 (2021). https://doi.org/10.1016/j.anucene.2020.108104

    Article  Google Scholar 

  29. K. Ma, C. Yu, J. Chen et al., Transmutation of 135Cs in a single-fluid double-zone thorium molten salt reactor. Int. J. Energy Res. (2020). https://doi.org/10.1002/er.6235

    Article  Google Scholar 

  30. K. Ma, C. Yu, X. Cai et al., Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor. Nucl. Sci. Tech. 31, 10 (2020). https://doi.org/10.1007/s41365-019-0720-1

    Article  Google Scholar 

  31. J.B. Roberto, C.W. Alexander, R.A. Boll et al., Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.009

    Article  ADS  Google Scholar 

  32. M. Jin, S. Xu, G. Yang et al., Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. Nucl. Sci. Tech. 32, 96 (2021). https://doi.org/10.1016/j.anucene.2020.108104

    Article  Google Scholar 

  33. H. Meng, Y. Yang, Z. Zhao et al., Physical studies of minor actinide transmutation in the accelerator-driven sub-critical system. Nucl. Sci. Tech. 30, 91 (2021). https://doi.org/10.1007/s41365-019-0623-1

    Article  Google Scholar 

  34. A. Qaaod, V. Gulik, 226Ra irradiation to produce 225Ac and 213Bi in an accelerator-driven system reactor. Nucl. Sci. Tech. 31, 44 (2020). https://doi.org/10.1007/s41365-020-00753-2

    Article  Google Scholar 

  35. T. Atsunori, O. Masaki, Numerical analysis on element creation by nuclear transmutation of fission products. Nucl. Sci. Tech. 26, S10311 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.S10311

    Article  Google Scholar 

  36. Y. Nagame, M. Hirata, Production and properties of tansuranium elements. Radiochim. Acta 99, 377–393 (2021). https://doi.org/10.1524/ract.2011.1853

    Article  Google Scholar 

  37. M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112(12), 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  ADS  Google Scholar 

  38. M. Laatiaoui, S. Raeder, New developments in the production and research of actinide elements. Atoms 10, 61 (2022). https://doi.org/10.3390/atoms10020061

    Article  ADS  Google Scholar 

  39. Q. Pan, H. Lu, D. Li et al., A new nonlinear iterative method for SPN method. Ann. Nucl. Energy 110, 920–927 (2017). https://doi.org/10.1016/j.anucene.2017.07.030

    Article  Google Scholar 

  40. Q. Pan, K. Wang, One-step Monte Carlo global homogenization based on RMC code. Nucl. Eng. Technol. 51, 1209–1217 (2019). https://doi.org/10.1016/j.net.2019.04.001

    Article  Google Scholar 

  41. Q. Pan, T. Zhang, X. Liu et al., Optimal batch size growth for Wielandt method and superhistory method. Nucl. Sci. Eng. 196(2), 183–192 (2021). https://doi.org/10.1080/00295639.2021.1968223

    Article  ADS  Google Scholar 

  42. T. Zhang, H. Wu, Y. Zheng et al., A 3D transport-based core analysis code for research reactors with unstructured geometry. Nucl. Eng. Des. 265, 599–610 (2013). https://doi.org/10.1016/j.nucengdes.2013.08.068

    Article  Google Scholar 

  43. F.B. Brown, Fundamentals of Monte Carlo particle transport. LA-UR-05–4983, Los Alamos National Laboratory, 2008. https://mcnp.lanl.gov/pdf_files/la-ur-05-4983.pdf

  44. Z. Xie, Physical analysis of nuclear reactor (Xi’an Jiaotong University Press, Xi’an, 2004). (in Chinese)

    Google Scholar 

  45. D. She, Y. Liu, K. Wang et al., Development of burnup methods and capabilities in Monet Carlo code RMC. Ann. Nucl. Energy 51, 289–294 (2013). https://doi.org/10.1016/j.anucene.2012.07.033

    Article  Google Scholar 

  46. D. She, K. Wang, G. Yu, Development of the point-depletion code DEPTH. Nucl. Eng. Des. 258, 235–240 (2013). https://doi.org/10.1016/j.nucengdes.2013.01.007

    Article  Google Scholar 

  47. A. Nouri, P. Nagel, N. Soppera et al., JANIS: a new software for nuclear data services. J. Nucl. Sci. Technol. 39, 1480–1483 (2002). https://doi.org/10.1080/00223131.2002.10875385

    Article  Google Scholar 

  48. Q. Pan, N. An, T. Zhang et al., Single-step Monte Carlo criticality algorithm. Comput. Phys. Commun. 279, 108439 (2022). https://doi.org/10.1016/j.cpc.2022.108439

    Article  MathSciNet  Google Scholar 

  49. Q. Pan, T. Zhang, X. Liu et al., SP3-Coupled global variance reduction method based on RMC code. Nucl. Sci. Tech. 32, 122 (2021). https://doi.org/10.1007/s41365-021-00973-0

    Article  Google Scholar 

  50. A. Ouardia, R. Alamia, A. Bensitela et al., GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco. Nucl. Instrum. Meth. Phys. Res. Sect. A 651, 21–27 (2011). https://doi.org/10.1016/j.nima.2011.02.096

    Article  ADS  Google Scholar 

  51. J. Mokhtari, F. Faghihi, J. Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux. Prog. Nucl. Energy 100, 211–232 (2017). https://doi.org/10.1016/j.pnucene.2017.06.010

    Article  Google Scholar 

  52. K. Wang, Z. Li, D. She et al., RMC—a Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). https://doi.org/10.1016/j.anucene.2014.08.048

    Article  Google Scholar 

  53. N. Xoubi, R.T. Primm III, Modeling of the high flux isotope reactor cycle 400. Oak Ridge National Laboratory. ORNL/TM-2004/251, 2004. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.605.281&rep=rep1&type=pdf

  54. S. Hogle, G.I. Maldonado, Modeling of the high flux isotope reactor cycle 400 with KENO-VI. Trans. Am. Nucl. Soc. 104(1), 915 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Qing-Quan Pan, Qing-Fei Zhao, Lian-Jie Wang, Bang-Yang Xia, Yun Cai, and Xiao-Jing Liu. The first draft of the manuscript was written by Qing-Quan Pan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qing-Quan Pan or Xiao-Jing Liu.

Additional information

This work is sponsored by Natural Science Foundation of Shanghai (NO. 22ZR1431900) and Science and Technology on Reactor System Design Technology Laboratory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, QQ., Zhao, QF., Wang, LJ. et al. Rapid diagnostic method for transplutonium isotope production in high flux reactors. NUCL SCI TECH 34, 44 (2023). https://doi.org/10.1007/s41365-023-01185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01185-4

Keywords

Navigation