Skip to main content
Log in

Development of a large nanocrystalline soft magnetic alloy core with high μ′pQf products for CSNS-II

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A waterproof nanocrystalline soft magnetic alloy core with a size of O.D.850 mm × I.D.316 mm × H.25 mm for radio frequency acceleration was successfully developed by winding 18 μm 1k107b MA ribbons. The \(\mu_{\text{p}}^{^{\prime}} Qf\) products reached 7.5, 10, and 12 GHz at 1, 3, and 5 MHz, respectively. The \(\mu_{\text{p}}^{^{\prime}} Qf\) products of the MA core (O.D.250 mm × I.D.100 mm × H.25 mm) manufactured using a 13 μm MA ribbon further increased by 30%. Detailed improvements on the MA core manufacture process are discussed herein. Continuous high-power tests on the new MA cores demonstrated its good performance of waterproofness, particularly its stability of high \(\mu_{\text{p}}^{^{\prime}} Qf\) products. The MA core with high \(\mu_{\text{p}}^{^{\prime}} Qf\) product and large size can operate under a high average RF power, high electric field, and in deionized water, which will be used in the China Spallation Neutron Source Phase II (CSNS-II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Suzuki, A. Makino, A. Inoue et al., Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited). J. Appl. Phys. 70(10), 6232–6237 (1991). https://doi.org/10.1063/1.350006

    Article  ADS  Google Scholar 

  2. Y.H. Lv, J. Zhang, B. Li et al., Mössbauer spectroscopy studies on the particle size distribution effect of Fe-B-P amorphous alloy on the microwave absorption properties. Nucl. Sci. Tech. 31(3), 24 (2020). https://doi.org/10.1007/s41365-020-0734-8

    Article  Google Scholar 

  3. M. Yamamoto, K. Hasegawa, M. Yoshii et al., High power test of MA cavity for J-PARC RCS. In: 2007 IEEE Particle Accelerator Conference (PAC). 1532-1534 (2007). https://doi.org/10.1109/PAC.2007.4440813

  4. T. Trupp, NANOPERM broad band magnetic alloy cores for synchrotron RF systems. IPAC (2014). https://doi.org/10.18429/JACoW-IPAC2014-MOPRO016

    Article  Google Scholar 

  5. B. Wu, H. Sun, X. Li et al., Higher harmonic voltage analysis of magnetic-alloy cavity for CSNS/RCS upgrade project. Radiat. Detect. Technol. Method 4, 293–302 (2020). https://doi.org/10.1007/s41605-020-00183-z

    Article  Google Scholar 

  6. T. Uesugi, Y. Mori, C. Ohmori et al., Direct-cooling MA cavity for J-PARC synchrotrons. In: Proceedings of the 2003 Particle Accelerator Conference, pp. 1234-1236 (2003). https://doi.org/10.1109/PAC.2003.1289663

  7. C. Ohmori, E. Ezura, K. Hara et al., Development of a high gradient rf system using a nanocrystalline soft magnetic alloy. Phys. Rev. ST Acc. Beams 16(11), 112002 (2013). https://doi.org/10.1103/physrevstab.16.112002

    Article  ADS  Google Scholar 

  8. M. Nomura, M. Yamamoto, A. Schnase et al., The origin of magnetic alloy core buckling in J-PARC 3GeV RCS. Nucl. Instrum. Meth. A 623(3), 903–909 (2010). https://doi.org/10.1016/j.nima.2010.08.111

    Article  ADS  Google Scholar 

  9. R.K. Nutor, X. Fan, S. Ren et al., Research progress of stress-induced magnetic anisotropy in Fe-based amorphous and nanocrystalline alloys. J. Electromagn. Anal. App. 09(4), 53–72 (2017). https://doi.org/10.4236/jemaa.2017.94006

    Article  Google Scholar 

  10. P. Hulsmann, G. Hutter, W. Vinzenz, The bunch compressor system for SIS18 AT GSI. In: Proceedings of EPAC2004, Lucerne, Switzerland, pp. 1165–1167 (2004).

  11. X. Zhou, S. Li, J. Li et al., Preparation of special silicon steel grade MgO from hydromagnesite. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 14(3), 225–230 (2007). https://doi.org/10.1016/S1005-8850(07)60043-7

    Article  Google Scholar 

  12. J.M. Choi, H.E. Kim, I.S. Lee, Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21(5), 469–473 (2000). https://doi.org/10.1016/S0142-9612(99)00186-6

    Article  Google Scholar 

  13. K. Sato, H. Kaya, O. Funayama et al., Evaluation of polysilazanes-perhydropolysilazane, polyborosilazane and methylhy-dropolysilazane as matrix precursors of ceramic-matrix composites. J. Ceram. Soc. Jpn. 109, 440–446 (2001). https://doi.org/10.2109/jcersj.109.1269_440

    Article  Google Scholar 

  14. S.H. Lim, Y.S. Choi, Effects of surface coating by sol-gel process on the magnetic properties of a Co-based amorphous alloy. Magn. IEEE Trans. 31(6), 3898–3900 (1995). https://doi.org/10.1109/20.489809

    Article  ADS  Google Scholar 

  15. Y. Morita, T. Kageyama, Development of medium-frequency cavity loaded with multi-ring magnetic alloy cores cooled by chemically inert liquid. Nucl. Instrum. Meth. A 1010, 165525 (2021). https://doi.org/10.1016/j.nima.2021.165525

    Article  Google Scholar 

  16. Y. Morita, T. Kageyama, M. Akoshima et al., Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core. Nucl. Instrum. Meth. A 728, 23–30 (2013). https://doi.org/10.1016/j.nima.2013.05.177

    Article  ADS  Google Scholar 

  17. K. Wang, Z. Xu, P. Jin et al., Design of the deceleration magnetic alloy cavity for a high-intensity heavy-ion accelerator facility spectrometer ring. Nucl. Instrum. Meth. A 1005, 165364 (2021). https://doi.org/10.1016/j.nima.2021.165364

    Article  Google Scholar 

  18. M. Nomura, A. Schnase, T. Shimada et al., A convenient way to find an electrical insulation break of MA cores in J-PARC synchrotrons. Nucl. Instrum. Meth. A 668, 83–87 (2011). https://doi.org/10.1016/j.nima.2011.11.092

    Article  ADS  Google Scholar 

  19. J. He, K.Y. He, L.Z. Cheng et al., The influence of pre-annealing treatment on the exothermic behavior and magnetic properties of Fe73.5Cu1Nb3Si13.5B9 alloy. J. Magn. Magn. Mater. 208, 44–48 (2000). https://doi.org/10.1016/S0304-8853(99)00550-8

    Article  ADS  Google Scholar 

  20. M. Nomura, T. Shimada, F. Tamura et al., Mechanisms of increasing of the magnetic alloy core shunt impedance by applying a transverse magnetic field during annealing. Nucl. Instrum. Meth. A 797, 196–200 (2015). https://doi.org/10.1016/j.nima.2015.06.061

    Article  ADS  Google Scholar 

  21. M. Nomura, T. Shimada, F. Tamura et al., Ribbon thickness dependence of the magnetic alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons. Nucl. Instrum. Meth. A 749, 84–89 (2014). https://doi.org/10.1016/j.nima.2014.02.041

    Article  ADS  Google Scholar 

  22. E. Ezura, M. Nomura, K. Hasegawa et al., Condition of MA Cores in the RF cavities of J-PARC synchrotrons after several years of operation. In: Proceedings of IPAC’10, Kyoto, Japan, THPEA022, pp. 3723–3725 (2010).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bin Wu, Chun-Lin Zhang, Yang Liu, Xiang Li, Jian Wu and Zhun Li. The first draft of the manuscript was written by Bin Wu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bin Wu or Xiao Li.

Additional information

This work was supported by the funds of the National Natural Science Foundation of China (Nos. 11175194, 11875270, and U1832210), Youth Innovation Promotion Association CAS (No. 2018015), and Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120046).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Li, X., Li, Z. et al. Development of a large nanocrystalline soft magnetic alloy core with high μ′pQf products for CSNS-II. NUCL SCI TECH 33, 99 (2022). https://doi.org/10.1007/s41365-022-01087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01087-x

Keywords

Navigation