Skip to main content
Log in

Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

By implementing an additional heavy quark–antiquark pair production trigger in a multiphase transport (AMPT) model, we study the effect on anisotropy flows of identified particles with a focus on charged particles and quarkonium (\(J/\Psi \) and \(\varUpsilon \)). A systematic increase in the collision rate for active partons in the AMPT model with such an implementation has been observed. It leads to a slight increase of identified particles anisotropy flows as a function of transverse momentum (\(p_{\text{T}}\)) and rapidity, and gives a better description of the experimental data of elliptic flow toward larger \( p_{\text{T}}\). Our approach provides an efficient way to study the heavy quark dynamics in the AMPT model at LHC energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon plasma: from big bang to little bang. Cambridge University Press. ISBN -10: 0521561086

  2. J. Chen, D. Keane, Y.G. Ma et al., Antinuclei in heavy-ion collisions. Phys. Rept. 760, 1–39 (2018). https://doi.org/10.1016/j.physrep.2018.07.002

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). https://doi.org/10.1103/PhysRevLett.94.111601

    Article  ADS  Google Scholar 

  4. N. Demir, S.A. Bass, Shear-viscosity to entropy-density ratio of a relativistic hadron gas. Phys. Rev. Lett. 102, 172302 (2009). https://doi.org/10.1103/PhysRevLett.102.172302

    Article  ADS  Google Scholar 

  5. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  ADS  Google Scholar 

  6. S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 23, 293–333 (2010). https://doi.org/10.1007/978-3-642-01539-7_10

    Article  ADS  Google Scholar 

  7. C. Adler, Z. Ahammed, C. Allgower et al., Elliptic flow from two and four particle correlations in Au+Au collisions at \(\sqrt{s_{\rm NN}}\) = 130 GeV. Phys. Rev. C 66, 034904 (2002). https://doi.org/10.1103/PhysRevC.66.034904

    Article  ADS  Google Scholar 

  8. B. Alver, B.B. Back, M.D. Baker et al., Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions. Phys. Rev. C 77, 014906 (2008). https://doi.org/10.1103/PhysRevC.77.014906

    Article  ADS  Google Scholar 

  9. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., Centrality dependence of charged hadron and strange hadron elliptic flow from \(\sqrt{s_{\rm NN}}\) = 200 GeV Au + Au collisions. Phys. Rev. C 77, 054901 (2008). https://doi.org/10.1103/PhysRevC.77.054901

    Article  ADS  Google Scholar 

  10. S. Afanasiev, C. Aidala, N.N. Ajitanand et al., Systematic studies of elliptic flow measurements in Au+Au collisions at \(\sqrt{s_{\rm NN}}\) GeV. Phys. Rev. C 80, 024909 (2009). https://doi.org/10.1103/PhysRevC.80.024909

    Article  ADS  Google Scholar 

  11. S. Chatrchyan, V. Khachatryan, A.M. Sirunyan et al., Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at \(\sqrt{s_{\rm NN}}\) = 2.67 TeV. Phys. Rev. C 87, 014902 (2013). https://doi.org/10.1103/PhysRevC.87.014902

    Article  ADS  Google Scholar 

  12. G. Aad, B. Abbott, J. Abdallah et al., Measurement of event-plane correlations in \(\sqrt{s_{NN}}=2.76\) TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 90, 024905 (2014). https://doi.org/10.1103/PhysRevC.90.024905

    Article  ADS  Google Scholar 

  13. S. Acharya, F.T.- Acosta, D. Adamova et al., Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) and 2.76 TeV. JHEP 07, 103 (2018). https://doi.org/10.1007/JHEP07(2018)103

    Article  ADS  Google Scholar 

  14. K. Dusling, W. Li, B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions. Int. J. Mod. Phys. E 25, 1630002 (2016). https://doi.org/10.1142/S0218301316300022

    Article  ADS  Google Scholar 

  15. J.L. Nagle, W.A. Zajc, Small system collectivity in relativistic hadronic and nuclear collisions. Ann. Rev. Nucl. Part. Sci. 68, 211–235 (2018). https://doi.org/10.1146/annurev-nucl-101916-123209

    Article  ADS  Google Scholar 

  16. C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). https://doi.org/10.1007/s41365-020-00829-z

    Article  MathSciNet  Google Scholar 

  17. S. Wu, C. Shen, H. Song, Dynamical exploring the QCD matter at finite temperatures and densities-a short review. Chin. Phys. Lett. 38, 081201 (2021). https://doi.org/10.1088/0256-307X/38/8/081201

    Article  ADS  Google Scholar 

  18. Z. Han, B. Chen, Y. Liu, Critical temperature of deconfinement in a constrained space using a bag model at vanishing baryon density. Chin. Phys. Lett. 37, 112501 (2020). https://doi.org/10.1088/0256-307X/37/11/112501

    Article  ADS  Google Scholar 

  19. R.H. Fang, R.D. Dong, D.F. Hou et al., Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field. Chin. Phys. Lett. 38, 091201 (2021). https://doi.org/10.1088/0256-307X/38/9/091201

    Article  ADS  Google Scholar 

  20. T. Matsui, H. Satz, \(J/\psi \) suppression by Quark–Gluon plasma formation. Phys. Lett. B 178, 416–422 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

    Article  ADS  Google Scholar 

  21. N. Brambilla, S. Eidelman, B. Heltsley et al., Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9

    Article  ADS  Google Scholar 

  22. Z.B. Tang, W.M. Zha, Y.F. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2020). https://doi.org/10.1007/s41365-020-00785-8

    Article  Google Scholar 

  23. J. Zhao, K. Zhou, S. Chen et al., Heavy flavors under extreme conditions in high energy nuclear collisions. Prog. Part. Nucl. Phys. 114, 103801 (2020). https://doi.org/10.1016/j.ppnp.2020.103801

    Article  Google Scholar 

  24. A. Adare, S. Afanasiev, C. Aidala et al., \(J/\psi \) production vs centrality, transverse momentum, and rapidity in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. Lett. 98, 232301 (2007). https://doi.org/10.1103/PhysRevLett.98.232301

    Article  ADS  Google Scholar 

  25. R. Aaij, B. Adeva, M. Adinolfi et al., Study of \(\Upsilon \) production and cold nuclear matter effects in \(p\)Pb collisions at \(\sqrt{s_{NN}}\)=5 TeV. JHEP 07, 094 (2014). https://doi.org/10.1007/JHEP07(2014)094

    Article  ADS  Google Scholar 

  26. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Energy dependence of \(J/\psi\) production in Au+Au collisions at \(\sqrt{s_{NN}} =\) 39, 62.4 and 200 GeV. Phys. Lett. B 771, 13–20 (2017). https://doi.org/10.1016/j.physletb.2017.04.078

    Article  ADS  Google Scholar 

  27. V. Khachatryan et al., Suppression of \(\Upsilon (1S), \Upsilon (2S)\) and \(\Upsilon (3S)\) production in PbPb collisions at \(\sqrt{s_{\rm NN}}\) = 2.76 TeV. Phys. Lett. B 770, 357–379 (2017). https://doi.org/10.1016/j.physletb.2017.04.031

    Article  ADS  Google Scholar 

  28. M. Aaboud, G. Aad, B. Abbott et al., Prompt and non-prompt \(J/\psi \) and \(\psi (2{{\rm S}})\) suppression at high transverse momentum in \(5.02~{{\rm TeV}}\) Pb+Pb collisions with the ATLAS experiment. Eur. Phys. J. C 78, 762 (2018). https://doi.org/10.1140/epjc/s10052-018-6219-9

    Article  ADS  Google Scholar 

  29. M. Aaboud, G. Aad, B. Abbott et al., Measurement of quarkonium production in proton–lead and proton–proton collisions at \(5.02\,{{\rm TeV}}\) with the ATLAS detector. Eur. Phys. J. C 78, 171 (2018). https://doi.org/10.1140/epjc/s10052-018-5624-4

    Article  ADS  Google Scholar 

  30. J. Adam, L. Adamczyk, J.R. Adams et al., Measurement of inclusive \(J/\psi\) suppression in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV through the dimuon channel at STAR. Phys. Lett. B 797, 134917 (2019). https://doi.org/10.1016/j.physletb.2019.134917

    Article  Google Scholar 

  31. S. Acharya, D. Adamová, S.P. Adhya et al., Measurement of \(\Upsilon (1{\rm S})\) elliptic flow at forward rapidity in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}=5.02\) TeV. Phys. Rev. Lett. 123, 192301 (2019). https://doi.org/10.1103/PhysRevLett.123.192301

    Article  ADS  Google Scholar 

  32. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., Observation of an antimatter hypernucleus. Science 328, 58–62 (2010). https://doi.org/10.1126/science.1183980

    Article  ADS  Google Scholar 

  33. B. Schenke, S. Jeon, C. Gale, (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions. Phys. Rev. C 82, 014903 (2010). https://doi.org/10.1103/PhysRevC.82.014903

    Article  ADS  Google Scholar 

  34. Z.W. Lin, C.M. Ko, B.A. Li et al., A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  ADS  Google Scholar 

  35. C. Zhang, Z.W. Lin, Left-right splitting of elliptic flow due to directed flow in heavy ion collisions. arXiv:2109.04987

  36. D. Shen, J. Chen, Z.W. Lin, The effect of hadronic scatterings on the measurement of vector meson spin alignments in heavy-ion collisions. Chin. Phys. C 45, 054002 (2021). https://doi.org/10.1088/1674-1137/abe763

    Article  ADS  Google Scholar 

  37. L. Zheng, G.H. Zhang, Y.F. Liu et al., Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. Eur. Phys. J. C 81, 755 (2021). https://doi.org/10.1140/epjc/s10052-021-09527-5

    Article  ADS  Google Scholar 

  38. C.Z. Wang, W.Y. Wu, Q.Y. Shou et al., Interpreting the charge-dependent flow and constraining the chiral magnetic wave with event shape engineering. Phys. Lett. B 820, 136580 (2021). https://doi.org/10.1016/j.physletb.2021.136580

    Article  Google Scholar 

  39. H. Wang, J. Chen, Study on open charm hadron production and angular correlation in high-energy nuclear collisions. Nucl. Sci. Tech. 32, 2 (2021). https://doi.org/10.1007/s41365-020-00839-x

    Article  Google Scholar 

  40. X.L. Zhao, G.L. Ma, Y.G. Ma et al., Validation and improvement of the ZPC parton cascade inside a box. Phys. Rev. C 102, 024904 (2020). https://doi.org/10.1103/PhysRevC.102.024904

    Article  ADS  Google Scholar 

  41. T. Shao, J. Chen, C.M. Ko et al., Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model. Phys. Rev. C 102, 014906 (2020). https://doi.org/10.1103/PhysRevC.102.014906

    Article  ADS  Google Scholar 

  42. C. Zhang, L. Zheng, F. Liu et al., Update of a multiphase transport model with modern parton distribution functions and nuclear shadowing. Phys. Rev. C 99, 064906 (2019). https://doi.org/10.1103/PhysRevC.99.064906

    Article  ADS  Google Scholar 

  43. Z.W. Lin, L. Zheng, Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 32, 113 (2021). https://doi.org/10.1007/s41365-021-00944-5

    Article  Google Scholar 

  44. X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501–3516 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  ADS  Google Scholar 

  45. H. Wang, J. Chen, Y.G. Ma et al., Charm hadron azimuthal angular correlations in au+ au collisions at \(\sqrt{s_{{\rm NN}}}=200\) Gev from parton scatterings. Nucl. Sci. Tech. 30, 185 (2019). https://doi.org/10.1007/s41365-019-0706-z

    Article  Google Scholar 

  46. H.T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD Quark Wigner operator. Nucl. Phys. B 276, 706–728 (1986). https://doi.org/10.1016/0550-3213(86)90072-6

    Article  ADS  Google Scholar 

  47. H.T. Elze, M. Gyulassy, D. Vasak, Transport equations for the QCD Gluon Wigner operator. Phys. Lett. B 177, 402–408 (1986). https://doi.org/10.1016/0370-2693(86)90778-1

    Article  ADS  Google Scholar 

  48. B. Zhang, ZPC 1.0.1: a Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193–206 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1

    Article  ADS  MATH  Google Scholar 

  49. B. Zhang, M. Gyulassy, C.M. Ko, Elliptic flow from a parton cascade. Phys. Lett. B 455, 45–48 (1999). https://doi.org/10.1016/S0370-2693(99)00456-6

    Article  ADS  Google Scholar 

  50. J. Adam, D. Adamová, M.M. Aggarwal et al., Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\) = 5.02 TeV. Phys. Rev. Lett. 116, 222302 (2016). https://doi.org/10.1103/PhysRevLett.116.222302

    Article  ADS  Google Scholar 

  51. J. Adam, D. Adamová, M.M. Aggarwal et al., Anisotropic flow of charged particles in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}=5.02\) TeV. Phys. Rev. Lett. 116, 132302 (2016). https://doi.org/10.1103/PhysRevLett.116.132302

    Article  ADS  Google Scholar 

  52. L.Y. Zhang, J.H. Chen, Z.W. Lin et al., Two-particle angular correlations in \(pp\) and \(p\)-Pb collisions at energies available at the CERN Large Hadron Collider from a multiphase transport model. Phys. Rev. C 98, 034912 (2018). https://doi.org/10.1103/PhysRevC.98.034912

    Article  ADS  Google Scholar 

  53. S. Acharya, S. Acharya, D. Adamova et al., J/\(\psi \) elliptic and triangular flow in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}\) = 5.02 TeV. JHEP 10, 141 (2020). https://doi.org/10.1007/JHEP10(2020)141

    Article  ADS  Google Scholar 

  54. J. Adam, D. Adamová, M.M. Aggarwal et al., Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at \(\sqrt{s_{{\rm NN}}}=2.76\) TeV. Phys. Lett. B 762, 376–388 (2016). https://doi.org/10.1016/j.physletb.2016.07.017

    Article  ADS  Google Scholar 

  55. S. Acharya, D. Adamová, A. Adler et al., Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC. Phys. Rev. Lett. 125, 022301 (2020). https://doi.org/10.1103/PhysRevLett.125.022301

    Article  ADS  Google Scholar 

  56. S.K. Das, S. Plumari, S. Chatterjee et al., Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions. Phys. Lett. B 768, 260–264 (2017). https://doi.org/10.1016/j.physletb.2017.02.046

    Article  ADS  Google Scholar 

  57. U. Gürsoy, D. Kharzeev, E. Marcus et al., Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions. Phys. Rev. C 98, 055201 (2018). https://doi.org/10.1103/PhysRevC.98.055201

    Article  ADS  Google Scholar 

  58. S. Chatterjee, P. Bożek, Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett. 120, 192301 (2018). https://doi.org/10.1103/PhysRevLett.120.192301

    Article  ADS  Google Scholar 

  59. J. Adam, L. Adamczyk, J.R. Adams et al., First observation of the directed flow of \(D^{0}\) and \(\overline{D^0}\) in Au+Au Collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. Lett. 123, 162301 (2019). https://doi.org/10.1103/PhysRevLett.123.162301

    Article  ADS  Google Scholar 

  60. A..M. Sirunyan et al., Measurement of prompt \({{\rm D}}^{0}\) and \({\overline{{\rm D}}^{0}}\) meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at \(\sqrt{s_{{\rm NN}}} =\) 5.02 TeV. Phys. Lett. B 816, 136253 (2021). https://doi.org/10.1016/j.physletb.2021.136253

    Article  Google Scholar 

Download references

Acknowledgements

Discussions with Dr. Hui Li are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hai Wang and Jin-Hui Chen. The first draft of the manuscript was written by Hai Wang and Jin-Hui Chen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-Hui Chen.

Additional information

This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34030200), the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030008), and the National Natural Science Foundation of China (Nos. 12025501, 11890710, 11890714, and 12147114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, JH. Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger. NUCL SCI TECH 33, 15 (2022). https://doi.org/10.1007/s41365-022-00999-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-00999-y

Keywords

Navigation