Skip to main content
Log in

Ensuring the possibility of using thorium as a fuel in a pressurized water reactor (PWR)

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The possibility of utilizing thorium as a fuel in a pressurized water reactor (PWR) has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic (TH) and solid structure performances. Therefore, the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel. The TH and solid structure performances of thorium-based fuels were investigated and compared with those of UO2. The radial and axial power peaking factors (PPFs) for UO2, (232Th, 235U) O2, and (232Th, 233U) O2 were examined with a PWR assembly to determine the total PPF of each one. Both Gd2O3 and Er2O3 were tested as burnable absorbers (BAs) to manage the excess reactivity at the beginning of the fuel cycle (BOC) and reduce the total PPF. Er2O3 resulted in a more significant reduction to the total PPF and, therefore, a greater reduction to the temperature distribution compared to Gd2O3. Given these results, we analyzed the effects of adding Er2O3 to thorium-based fuels on their TH and solid structure performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.G.G. Fonseca, M. Hedberg, L. Huan et al., Application of SPS in the fabrication of UN and (U, Th)N pellets from microspheres. J. Nucl. Mater. 536, 152181 (2020). https://doi.org/10.1016/j.jnucmat.2020.152181

    Article  Google Scholar 

  2. M.Y.M. Mohsen, M.A.E. Abdel-Rahman, A.A. Galahom, Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials. Ann. Nucl. Energy 159, 108330 (2021). https://doi.org/10.1016/j.anucene.2021.108330

    Article  Google Scholar 

  3. A.A. Galahom, M.Y.M. Mohsen, N. Amrani, Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) part 1: neutronic analysis. Nucl. Eng. Technol. (2021). https://doi.org/10.1016/j.net.2021.07.019

    Article  Google Scholar 

  4. F. Faghihi, S.M. Mirvakili, Burn up calculations for the Iranian miniature reactor: a reliable and safe research reactor. Nucl. Eng. Des. 239, 1000–1009 (2009). https://doi.org/10.1016/j.nucengdes.2009.01.014

    Article  Google Scholar 

  5. Y. Lu, Y. Yang, P. Zhang, Thermodynamic properties and structural stability of thorium dioxide. J. Phys. Condens. Matter 24, 225801 (2012). https://doi.org/10.1088/0953-8984/24/22/225801

    Article  ADS  Google Scholar 

  6. H. Muta, Y. Murakami, M. Uno et al., Thermophysical properties of Th1−xUxO2 pellets prepared by spark plasma sintering technique. J. Nucl. Sci. Technol. 50, 181–187 (2013). https://doi.org/10.1080/00223131.2013.757468

    Article  Google Scholar 

  7. A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide. Nucl. Eng. Des. 314, 165–172 (2017). https://doi.org/10.1016/j.nucengdes.2017.01.024

    Article  Google Scholar 

  8. E.H. Ugurua, S.F. Abdulsani, M.U. Khandaker et al., Investigation on the effect of 238U replacement with 232Th in small modular reactor (SMR) fuel matrix. Prog. Nucl. Energy 118, 103108 (2020). https://doi.org/10.1016/j.pnucene.2019.103108

    Article  Google Scholar 

  9. S.M. Mirvakili, Z. Gholamzadeh, S.A.H. Feghhi, Computational analysis of neutronic effects of ThO2 rods loaded in CANDU 6 fuel assemblies. Nucl. Sci. Tech. 27, 79 (2016). https://doi.org/10.1007/s41365-016-0101-y

    Article  Google Scholar 

  10. J. Al Zain, O. El Hajjaji, T. El Bardouni et al., Neutronic and burn-up calculations of the (ThO2–UO2) pin cell benchmark using DRAGON5 and MCNP6.2 codes with ENDF/B-VIII.0 nuclear data library. Int. J. Energy Res. 45, 11538–11551 (2021). https://doi.org/10.1002/er.6460

    Article  Google Scholar 

  11. X. Zhao, D. Cui, X. Cai et al., Analysis of Th-U breeding capability for an accelerator-driven subcritical molten salt reactor. Nucl. Sci. Tech. 29, 121 (2018). https://doi.org/10.1007/s41365-018-0448-3

    Article  Google Scholar 

  12. D.P. Daroca, S. Jaroszewicz, A.M. Llois et al., Phonon spectrum, mechanical and thermophysical properties of thorium carbide. J. Nucl. Mater. 437, 135–138 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.350

    Article  ADS  Google Scholar 

  13. A.E. Shields, D. Santos-Carballal, N.H. de Leeuw, A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide. J. Nucl. Mater. 473, 99–111 (2016). https://doi.org/10.1016/j.jnucmat.2016.02.009

    Article  ADS  Google Scholar 

  14. A.E. Shields, S.E.R. Hernandez, N.H. de Leeuw, Theoretical analysis of uranium-doped thorium dioxide: introduction of a thoria force field with explicit polarization. AIP Adv. 5, 087118 (2015). https://doi.org/10.1063/1.4928438

    Article  ADS  Google Scholar 

  15. G. McKinney, MCNPX User’s Manual. Version 2 (7) (2011)

  16. A.A. Galahom, Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel. Nucl. Eng. Technol. 48, 751–757 (2020). https://doi.org/10.1016/j.net.2016.01.003

    Article  Google Scholar 

  17. N.E. Todreas, M.S. Kazimi, Nuclear Systems I: Thermal Hydraulic Fundamentals (Hemisphere Publishing Co., New York, 1990). ISBN: 0891169350

  18. M.Y.M. Mohsen, M.S. Hassan, M. Aziz et al., Investigating the neutronic, thermal-hydraulic, and solid mechanics analysis for AP-1000 nuclear reactor. Energy Sources Part A Recovery Util. Environ. Eff. 1, 5 (2021). https://doi.org/10.1080/15567036.2021.1912215

    Article  Google Scholar 

  19. IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data (Vienna, 2009)

  20. V. Haase, H. Keller-Rudek, L. Manes et al., U Uranium-Supplement Volume C5 Uranium Dioxide, UO2, Physical Properties (Springer, Berlin, 1986). https://doi.org/10.1007/978-3-662-10719-5

    Book  Google Scholar 

  21. K. Geelhood, W.G. Luscher, Material Property Correlations: Comparisons Between FRAPCON-4.0, FRAPTRAN-2.0, and MATPRO (2015). https://doi.org/10.2172/1030897

  22. A.K. Sengupta, T. Jarvis, M.R. Nair et al., Thermal Diffusivity and Thermal Conductivity of (Th, U)O FUELS. INDIA (2000). https://doi.org/10.1016/j.jnucmat.2018.01.014

  23. F. Faghihi, S.M. Mirvakili, S.S. Arshi et al., Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle. Prog. Nucl. Energy 87, 39–46 (2016). https://doi.org/10.1016/j.pnucene.2015.10.020

    Article  Google Scholar 

  24. A.A. Galahom, Investigation of different burnable absorbers effects on the neutronic characteristics of PWR assembly. Ann. Nucl. Energy 94, 22–31 (2016). https://doi.org/10.1016/j.anucene.2016.02.025

    Article  Google Scholar 

  25. S. Peterson, R.E. Adams, D.A. Douglas Jr., Properties of Thorium, Its Alloys and Its Compounds (International Atomic Energy Agency (IAEA): IAEA, 1966)

    Google Scholar 

  26. R.A. Wolfe, S.F. Kaufman, Mechanical Properties of Oxide Fuels (LSBR/LWB DEVELOPMENT PROGRAM), United States 1967-01-01. https://www.osti.gov/biblio/4511674

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mohamed Y.M. Mohsen, Mohamed A.E. Abdel-Rahman, and A. Abdelghafar Galahom. The first draft of the manuscript was written by Mohamed Y.M. Mohsen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Abdelghafar Galahom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsen, M.Y.M., Abdel-Rahman, M.A.E. & Galahom, A.A. Ensuring the possibility of using thorium as a fuel in a pressurized water reactor (PWR). NUCL SCI TECH 32, 137 (2021). https://doi.org/10.1007/s41365-021-00981-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00981-0

Keywords

Navigation