Skip to main content

Advertisement

Log in

Performance of digital data acquisition system in gamma-ray spectroscopy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A newly developed digital data acquisition system, which is based on the digital pulse processor Pixie-16 modules by XIA LLC, was tested with the \(\gamma\)-ray detector array of the China Institute of Atomic Energy using the \(\gamma\)-ray source and in-beam \(\gamma\)-rays. A comparison between this digital data acquisition system and the conventional analog data acquisition system was made. At a low count rate, both systems exhibit good and comparable energy resolutions. At a high count rate above 8.8 k/s, while the energy resolution obtained by the analog system deteriorates significantly, the energy resolution obtained by the digital system is nearly unchanged. Meanwhile, experimental data with higher statistics can be collected by the digital system. The advantage of this digital system over the conventional analog system can be ascribed to its excellent capability of handling pile-up pulses at higher count rates, and the fact that it has nearly no dead time in data transmission and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Eberth, J. Simpson, From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 60, 283–337 (2008). https://doi.org/10.1016/j.ppnp.2007.09.001

    Article  ADS  Google Scholar 

  2. M.A. Riley, J. Simpson, E.S. Paul, High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus. Phys. Scr. 91, 123002 (2016). https://doi.org/10.1088/0031-8949/91/12/123002

    Article  ADS  Google Scholar 

  3. M.J. Koskelo, I.J. Koskelo, B. Sielaff, Comparison of analog and digital signal processing systems using pulsers. Nucl. Instrum. Methods Phys. A 422, 373–378 (1999). https://doi.org/10.1016/S0168-9002(98)00986-3

    Article  ADS  Google Scholar 

  4. S. Mitra, L. Wielopolski, G. Hendrey, Comparison of a digital and an analog signal processing system for neutron inelastic gamma-ray spectrometry. Appl. Radiat. Isot. 61, 1463–1468 (2004). https://doi.org/10.1016/j.apradiso.2004.02.024

    Article  Google Scholar 

  5. W.K. Warburton, P.M. Grudberg, Current trends in developing digital signal processing electronics for semiconductor detectors. Nucl. Instrum. Methods Phys. A 568, 350–358 (2006). https://doi.org/10.1016/j.nima.2006.07.021

    Article  ADS  Google Scholar 

  6. A. Al-Adili, F.-J. Hambsch, S. Oberstedt et al., Comparison of digital and analogue data acquisition systems for nuclear spectroscopy. Nucl. Instrum. Methods Phys. A 624, 684–690 (2010). https://doi.org/10.1016/j.nima.2010.09.126

    Article  ADS  Google Scholar 

  7. P. Wang, R.Y. Zhang, Y.Y. Yan et al., An acquisition system of digital nuclear signal processing for the algorithm development. Nucl. Sci. Tech. 24, 060408 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.06.012

    Article  Google Scholar 

  8. R.S. Dong, L. Zhao, J.J. Qin et al., Design of a 20-Gsps 12-bit time-interleaved analog-to-digital conversion system. Nucl. Sci. Tech. 32, 25 (2021). https://doi.org/10.1007/s41365-021-00863-5

    Article  Google Scholar 

  9. H.C. Scraggs, C.J. Pearson, G. Hackman et al., TIGRESS highly-segmented high-purity germanium clover detector. Nucl. Instrum. Methods Phys. A 543, 431–440 (2005). https://doi.org/10.1016/j.nima.2004.12.012

    Article  ADS  Google Scholar 

  10. J.-P. Martin, C. Mercier, N. Starinski et al., The TIGRESS DAQ/trigger system. IEEE Trans. Nucl. Sci. 55, 84–90 (2008). https://doi.org/10.1109/TNS.2007.910853

    Article  ADS  Google Scholar 

  11. M. Descovich, I.Y. Lee, P. Fallon et al., In-beam measurement of the position resolution of a highly segmented coaxial germanium detector. Nucl. Instrum. Methods Phys. A 553, 535–542 (2005). https://doi.org/10.1016/j.nima.2005.07.016

    Article  ADS  Google Scholar 

  12. W.F. Mueller, J.A. Church, T. Glasmacher et al., Thirty-two-fold segmented germanium detectors to identify \(\gamma\)-rays from intermediate-energy exotic beams. Nucl. Instrum. Methods Phys. A 466, 492–498 (2001). https://doi.org/10.1016/S0168-9002(01)00257-1

    Article  ADS  Google Scholar 

  13. K. Starosta, C. Vaman, D. Miller et al., Digital data acquisition system for experiments with segmented detectors at National Superconducting Cyclotron Laboratory. Nucl. Instrum. Methods Phys. A 610, 700–709 (2009). https://doi.org/10.1016/j.nima.2009.09.016

    Article  ADS  Google Scholar 

  14. C.J. Prokop, S.N. Liddick, B.L. Abromeit et al., Digital data acquisition system implementation at the National Superconducting Cyclotron Laboratory. Nucl. Instrum. Methods Phys. A 741, 163–168 (2014). https://doi.org/10.1016/j.nima.2013.12.044

    Article  ADS  Google Scholar 

  15. P.-A. Söderström, F. Recchia, J. Nyberg et al., Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors. Nucl. Instrum. Methods Phys. A 638, 96–109 (2011). https://doi.org/10.1016/j.nima.2011.02.089

    Article  ADS  Google Scholar 

  16. S. Akkoyun, A. Algora, B. Alikhani et al., AGATA-advanced gamma tracking array. Nucl. Instrum. Methods Phys. A 668, 26–58 (2012). https://doi.org/10.1016/j.nima.2011.11.081

    Article  ADS  Google Scholar 

  17. R. Palit, S. Saha, J. Sethi et al., A high speed digital data acquisition system for the Indian National gamma array at Tata Institute of Fundamental Research. Nucl. Instrum. Methods Phys. A 680, 90–96 (2012). https://doi.org/10.1016/j.nima.2012.03.046

    Article  ADS  Google Scholar 

  18. S. Das, S. Samanta, R. Banik et al., A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy Author links open overlay panel. Nucl. Instrum. Methods Phys. A 893, 138–145 (2018). https://doi.org/10.1016/j.nima.2018.03.035

    Article  ADS  Google Scholar 

  19. H.Y. Wu, Z.H. Li, H. Tan et al., A general-purpose digital data acquisition system (GDDAQ) at Peking University. Nucl. Instrum. Methods Phys. A 975, 164200 (2020). https://doi.org/10.1016/j.nima.2020.164200

    Article  Google Scholar 

  20. J.G. Wang, S.J. Zhu, L. Gu et al., High-spin states and collective band structures in the odd–odd \(^{140}\)Pm nucleus. J. Phys. G Nucl. Part. 37, 125107 (2010). https://doi.org/10.1088/0954-3899/37/12/125107

    Article  ADS  Google Scholar 

  21. XIA LLC, https://xia.com/

  22. H. Tan, W. Hennig, M. Walby et al., Digital data acquisition modules for instrumenting large segmented germanium detector arrays, in 2008 IEEE Nuclear Science Symposium Conference Record (2008), pp. 3196–3200. https://doi.org/10.1109/NSSMIC.2008.4775029

  23. W. Hennig, H. Tan, M. Walby et al., Clock and trigger synchronization between several chassis of digital data acquisition modules. Nucl. Instrum. Methods Phys. B 261, 1000–1004 (2007). https://doi.org/10.1016/j.nimb.2007.04.181

    Article  ADS  Google Scholar 

  24. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn. (California Technical Publishing, San Diego, 1999), pp. 277–282

    Google Scholar 

  25. V.T. Jordanov, G.F. Knoll, Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy. Nucl. Instrum. Methods Phys. A 345, 337–345 (1994). https://doi.org/10.1016/0168-9002(94)91011-1

    Article  ADS  Google Scholar 

  26. V.T. Jordanov, G.F. Knoll, A.C. Hubera et al., Digital techniques for real-time pulse shaping in radiation measurements. Nucl. Instrum. Methods Phys. A 353, 261–264 (1994). https://doi.org/10.1016/0168-9002(94)91652-7

    Article  ADS  Google Scholar 

  27. D.C. Radford, ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets. Nucl. Instrum. Methods Phys. A 361, 297–305 (1995). https://doi.org/10.1016/0168-9002(95)00183-2

    Article  ADS  Google Scholar 

  28. ROOT Data Analysis Framework, https://root.cern.ch//

  29. E.K. Warburton, J.W. Olness, A.M. Nathan et al., Yrast decay schemes from heavy-ion + \(^{48}{\rm Ca}\) fusion-evaporation reactions. II. \(^{59-60}{\rm Fe}\) and \(^{59-60}{\rm Co}\). Phys. Rev. C 16, 1027–1039 (1977). https://doi.org/10.1103/PhysRevC.16.1027

    Article  ADS  Google Scholar 

  30. Evaluated Nuclear Structure Data File (ENSDF), http://www.nndc.bnl.gov/ensdf

Download references

Acknowledgements

The authors wish to thank X.G. Wu, Y. Zheng, C.B. Li, H. Tan, and W. Hennig for their great help during testing of this DDAQ.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Di-Wen Luo, Hong-Yi Wu, and Zhi-Huan Li. The first draft of the manuscript was written by Di-Wen Luo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhi-Huan Li or Hui Hua.

Additional information

This work was supported by the National Key R&D Program of China (No. 2018YFA0404403), the National Natural Science Foundation of China (Nos. 12035001, 12075006, 11675003), and the State Key Laboratory of Nuclear Physics and Technology, PKU (No. NPT2020KFY18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, DW., Wu, HY., Li, ZH. et al. Performance of digital data acquisition system in gamma-ray spectroscopy. NUCL SCI TECH 32, 79 (2021). https://doi.org/10.1007/s41365-021-00917-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00917-8

Keywords

Navigation