Skip to main content
Log in

Radiation-induced cross-linking: a novel avenue to permanent 3D modification of polymeric membranes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Membrane fouling is always the biggest problem in the practice of membrane separation technologies, which strongly impacts their applicability, separation efficiency, cost effectiveness, and service lifespan. Herein, a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol (PVA) under gamma-ray irradiation at room temperature without any additives. After the modification, a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride (PVDF) membranes. This endowed them with good hydrophilicity, low adsorption of protein model foulants, and easy recoverability properties. In addition, the pore size and distribution were customized by controlling the PVA concentration, which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration. The cross-linked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic, alkaline, and oxidative reagents, which could greatly prolong the membrane service lifetime. Furthermore, this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers, including polyethylene glycol, sodium alginate, and polyvinyl pyrrolidone. This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhao, R. Zhang, Y. Liu et al., Antifouling membrane surface construction: chemistry plays a critical role. J. Membrane Sci. 551, 145–171 (2018). https://doi.org/10.1016/j.memsci.2018.01.039

    Article  Google Scholar 

  2. V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 206, 116–140 (2014). https://doi.org/10.1016/j.cis.2013.05.005

    Article  Google Scholar 

  3. S.A. Deowan, F. Galiano, J. Hoinkis et al., Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. J. Membrane Sci. 510, 524–532 (2016). https://doi.org/10.1016/j.memsci.2016.03.002

    Article  Google Scholar 

  4. S.H. Woo, J. Park, B.R. Min, Relationship between permeate flux and surface roughness of membranes with similar water contact angle values. Sep. Purif. Technol. 146, 187–191 (2015). https://doi.org/10.1016/j.seppur.2015.03.048

    Article  Google Scholar 

  5. Z. Jiang, S. Karan, A.G. Livingston, Membrane fouling: does microscale roughness matter? Ind. Eng. Chem. Res. 59, 5424–5431 (2020). https://doi.org/10.1021/acs.iecr.9b04798

    Article  Google Scholar 

  6. Y. Hu, Z. Lü, C. Wei et al., Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol–gel SiO2 nanoparticles growth. J. Membrane Sci. 545, 250–258 (2018). https://doi.org/10.1016/j.memsci.2017.09.081

    Article  Google Scholar 

  7. X. Tan, C. Hu, Z. Zhu et al., Electrically pore-size-tunable polypyrrole membrane for antifouling and selective separation. Adv. Funct. Mater. 29, 1903081 (2019). https://doi.org/10.1002/adfm.201903081

    Article  Google Scholar 

  8. S. Ghiasi, A. Behboudi, T. Mohammadi et al., Effect of surface charge and roughness on ultrafiltration membranes performance and polyelectrolyte nanofiltration layer assembly. Colloids Surf. A 580, 123753 (2019). https://doi.org/10.1016/j.colsurfa.2019.123753

    Article  Google Scholar 

  9. H. Jiang, Q. Zhao, P. Wang et al., Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG. J. Membrane Sci. 588, 117148 (2019). https://doi.org/10.1016/j.memsci.2019.05.072

    Article  Google Scholar 

  10. K.M. Dobosz, C.A. Kuo-LeBlanc, T. Emrick et al., Antifouling ultrafiltration membranes with retained pore size by controlled deposition of zwitterionic polymers and poly(ethylene glycol). Langmuir 35, 1872–1881 (2019). https://doi.org/10.1021/acs.langmuir.8b02184

    Article  Google Scholar 

  11. J.H. Zuo, Y.H. Gu, C. Wei et al., Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions. J. Membrane Sci. 595, 117475 (2020). https://doi.org/10.1016/j.memsci.2019.117475

    Article  Google Scholar 

  12. Y. Zhao, X. Yang, L. Yan et al., Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J. Membrane Sci. 618, 118525 (2021). https://doi.org/10.1016/j.memsci.2020.118525

    Article  Google Scholar 

  13. Z. Lin, C. Hu, X. Wu et al., Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. J. Membrane Sci. 554, 125–133 (2018). https://doi.org/10.1016/j.memsci.2018.02.065

    Article  Google Scholar 

  14. Z.-Y. Liu, Q. Jiang, Z. Jin et al., Understanding the antifouling mechanism of zwitterionic monomer-grafted polyvinylidene difluoride membranes: a comparative experimental and molecular dynamics simulation study. ACS Appl. Mater. Interfaces 11, 14408–14417 (2019). https://doi.org/10.1021/acsami.8b22059

    Article  Google Scholar 

  15. L. Han, Y.Z. Tan, C. Xu et al., Zwitterionic grafting of sulfobetaine methacrylate (SBMA) on hydrophobic PVDF membranes for enhanced anti-fouling and anti-wetting in the membrane distillation of oil emulsions. J. Membrane Sci. 588, 117196 (2019). https://doi.org/10.1016/j.memsci.2019.117196

    Article  Google Scholar 

  16. R. Zhang, Y. Liu, M. He et al., Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016). https://doi.org/10.1039/C5CS00579E

    Article  Google Scholar 

  17. T.A. Trinh, W. Li, J.W. Chew, Internal fouling during microfiltration with foulants of different surface charges. J. Membrane Sci. 602, 117983 (2020). https://doi.org/10.1016/j.memsci.2020.117983

    Article  Google Scholar 

  18. H. Sun, X. Yang, Y. Zhang et al., Segregation-induced in situ hydrophilic modification of poly(vinylidene fluoride) ultrafiltration membranes via sticky poly(ethylene glycol) blending. J. Membrane Sci. 563, 22–30 (2018). https://doi.org/10.1016/j.memsci.2018.05.046

    Article  Google Scholar 

  19. J. Zhao, X. Zhao, Z. Jiang et al., Biomimetic and bioinspired membranes: Preparation and application. Prog. Polym. Sci. 39, 1668–1720 (2014). https://doi.org/10.1016/j.progpolymsci.2014.06.001

    Article  Google Scholar 

  20. B. Wu, B. Zhang, J. Wu et al., Electrical switchability and dry-wash durability of conductive textiles. Sci. Rep. 5, 11255 (2015). https://doi.org/10.1038/srep11255

    Article  ADS  Google Scholar 

  21. R.L. Clough, High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 185, 8–33 (2001). https://doi.org/10.1016/S0168-583X(01)00966-1

    Article  ADS  Google Scholar 

  22. S.-T. Ji, Q.-Q. Wang, J. Zhou et al., Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol. Nucl. Sci. Tech. 31, 22 (2020). https://doi.org/10.1007/s41365-020-0726-8

    Article  Google Scholar 

  23. X. Xu, X.-J. Ding, J.-X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). https://doi.org/10.1007/s41365-019-0543-0

    Article  Google Scholar 

  24. M.M. Nasef, O. Güven, Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Prog. Polym. Sci. 37, 1597–1656 (2012). https://doi.org/10.1016/j.progpolymsci.2012.07.004

    Article  Google Scholar 

  25. J. Ye, B. Zhang, Y. Gu et al., Tailored graphene oxide membranes for the separation of ions and molecules. ACS Appl. Nano Mater. 2, 6611–6621 (2019). https://doi.org/10.1021/acsanm.9b01356

    Article  ADS  Google Scholar 

  26. M.M. Nasef, E.-S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29, 499–561 (2004). https://doi.org/10.1016/j.progpolymsci.2004.01.003

    Article  Google Scholar 

  27. M.M. Nasef, S.A. Gürsel, D. Karabelli et al., Radiation-grafted materials for energy conversion and energy storage applications. Prog. Polym. Sci. 63, 1–41 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.002

    Article  Google Scholar 

  28. J.H. O’Donnell, Radiation Chemistry of Polymers, in The effects of radiation on high-technology polymers. ACS Symposium Series, vol. 381, (American Chemical Society, 1989), pp. 1–13

    Google Scholar 

  29. J.S. Forsythe, D.J.T. Hill, The radiation chemistry of fluoropolymers. Prog. Polymer Sci. 25, 101–136 (2000). https://doi.org/10.1016/S0079-6700(00)00008-3

    Article  Google Scholar 

  30. Y. Iwai, A. Hiroki, M. Tamada, Radiation-induced crosslinking of Nafion® N117CS membranes. J. Membrane Sci. 369, 397–403 (2011). https://doi.org/10.1016/j.memsci.2010.12.027

    Article  Google Scholar 

  31. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer 34, 1454–1459 (1993). https://doi.org/10.1016/0032-3861(93)90861-4

    Article  Google Scholar 

  32. D. Rana, K. Bag, S.N. Bhattacharyya et al., Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): existence of both UCST and LCST. J. Polym. Sci. Poly. Phys. 38, 369–375 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3c369::AID-POLB3%3e3.0.CO;2-W

    Article  ADS  Google Scholar 

  33. J. Zhang, Z. Wang, Q. Wang et al., Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes. J. Membrane Sci. 537, 263–271 (2017). https://doi.org/10.1016/j.memsci.2017.05.041

    Article  Google Scholar 

  34. K. Zhu, Y. Mu, M. Zhang et al., Mixed matrix membranes decorated with in situ self-assembled polymeric nanoparticles driven by electrostatic interaction. J. Mater. Chem. A 6, 7859–7870 (2018). https://doi.org/10.1039/C8TA00317C

    Article  Google Scholar 

  35. P.H.H. Duong, S. Chisca, P.Y. Hong et al., Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes. ACS Appl. Mater. Interfaces 7, 3960–3973 (2015). https://doi.org/10.1021/am508387d

    Article  Google Scholar 

  36. Y. Li, S. Huang, S. Zhou et al., Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds. J. Membrane Sci. 556, 154–163 (2018). https://doi.org/10.1016/j.memsci.2018.04.004

    Article  Google Scholar 

  37. B. Wang, M. Kodama, S. Mukataka et al., On the intermolecular crosslinking of PVA chains in an aqueous solution by γ-ray irradiation. Polym. Gels Netw. 6, 71–81 (1998). https://doi.org/10.1016/S0966-7822(98)00003-3

    Article  Google Scholar 

  38. G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, Chichester, 1992)

    Google Scholar 

  39. A. Qin, X. Li, X. Zhao et al., Engineering a highly hydrophilic PVDF membrane via binding tio2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces 7, 8427–8436 (2015). https://doi.org/10.1021/acsami.5b00978

    Article  Google Scholar 

  40. J.R. Du, S. Peldszus, P.M. Huck et al., Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Res. 43, 4559–4568 (2009). https://doi.org/10.1016/j.watres.2009.08.008

    Article  Google Scholar 

  41. T. Montina, P. Wormald, P. Hazendonk, 13C solid-state NMR of the mobile phase of poly(vinylidene fluoride). Macromolecules 45, 6002–6007 (2012). https://doi.org/10.1021/ma3013477

    Article  ADS  Google Scholar 

  42. H. Jang, D.H. Song, I.C. Kim et al., Fouling control through the hydrophilic surface modification of poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 132, 41712 (2015). https://doi.org/10.1002/app.41712

    Article  Google Scholar 

  43. J.M. Rosiak, Hydrogel dressings, in Radiation Effects on Polymers. ACS Symposium Series, vol. 475, (American Chemical Society, 1991), pp. 271–299

    Chapter  Google Scholar 

  44. W. Chen, H. Bao, M. Zhang, Effect of gamma radiation on gelation in polyvinyl alcohol solutions. Radiat. Phys. Chem. 26, 43–47 (1985). https://doi.org/10.1016/0146-5724(85)90031-7

    Article  Google Scholar 

  45. T.R. Dargaville, G.A. George, D.J.T. Hill et al., High energy radiation grafting of fluoropolymers. Prog. Polym. Sci. 28, 1355–1376 (2003). https://doi.org/10.1016/S0079-6700(03)00047-9

    Article  Google Scholar 

  46. Y. Gu, H. Li, L. Liu et al., Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy. Carbon 178, 678–687 (2021). https://doi.org/10.1016/j.carbon.2021.03.051

    Article  Google Scholar 

  47. A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application. Environ. Sci. Water Res. Technol. 2, 17–42 (2016). https://doi.org/10.1039/C5EW00159E

    Article  Google Scholar 

  48. Y. Zhao, J. Wen, H. Sun et al., Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties. Chem. Eng. Res. Des. 156, 333–342 (2020). https://doi.org/10.1016/j.cherd.2020.02.006

    Article  Google Scholar 

  49. Y. Zhang, J. Wang, F. Gao et al., A comparison study: the different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes. Water Res. 109, 227–236 (2017). https://doi.org/10.1016/j.watres.2016.11.022

    Article  Google Scholar 

  50. X. Yang, B. Zhang, Z. Liu et al., Preparation of the antifouling microfiltration membranes from poly(N,N-dimethylacrylamide) grafted poly(vinylidene fluoride) (PVDF) powder. J. Mater. Chem. 21, 11908–11915 (2011). https://doi.org/10.1039/C1JM11348H

    Article  Google Scholar 

  51. S. Bhattacharjee, R. Kumar, K.S. Gandhi, Modelling of protein mixture separation in a batch foam column. Chem. Eng. Sci. 56, 5499–5510 (2001). https://doi.org/10.1016/S0009-2509(01)00156-7

    Article  Google Scholar 

  52. M.F. Rabuni, N.M. Nik Sulaiman, N. Awanis Hashim, A systematic assessment method for the investigation of the PVDF membrane stability. Desalin. Water Treat. 57, 1–12 (2016). https://doi.org/10.1080/19443994.2015.1012336

    Article  Google Scholar 

  53. X. Ding, M. Yu, Z. Wang et al., A promising clean way to textile colouration: cotton fabric covalently-bonded with carbon black, cobalt blue, cobalt green, and iron oxide red nanoparticles. Green Chem. 21, 6611–6621 (2019). https://doi.org/10.1039/C9GC02084E

    Article  Google Scholar 

  54. C. Yang, G. Wu, Chapter Four—Radiation Cross-Linking for Conventional and Supercritical CO2 Foaming of Polymer, in Radiation Technology for Advanced Materials. ed. by G. Wu, M. Zhai, M. Wang (Academic Press, 2019), pp. 115–139

    Chapter  Google Scholar 

  55. Y. Gu, Y. Qiao, Y. Meng et al., One-step synthesis of well-dispersed polypyrrole copolymers under gamma-ray irradiation. Polym. Chem. 12, 645–649 (2021). https://doi.org/10.1039/D0PY01566K

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Wan-Zhong Lang and his group from Shanghai Normal University for their enthusiastic help and support for the characterization of membranes, and they also have pleasure in acknowledging the support from the Shanghai Engineering Research Centre of Green Energy Chemical Engineering.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yu Gu and Bo-Wu Zhang. The first draft of the manuscript was written by Yu Gu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bo-Wu Zhang or Jing-Ye Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11875313, 12075153, and 11575277).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhang, BW., Guo, Z. et al. Radiation-induced cross-linking: a novel avenue to permanent 3D modification of polymeric membranes. NUCL SCI TECH 32, 70 (2021). https://doi.org/10.1007/s41365-021-00905-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00905-y

Keywords

Navigation