Skip to main content
Log in

Investigation of factors affecting vertical sag of stretched wire

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To study vertical sag requirements and factors affecting the stretched wire alignment method, the vertical sag equation is first derived theoretically. Subsequently, the influencing factors (such as the hanging weight or tension, span length, temperature change, elastic deformation, and the Earth’s rotation) of the vertical sag are summarized, and their validity is verified through actual measurements. Finally, the essential factors affecting vertical sag, i.e., the specific strength and length, are discussed. It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.K. Ambayev, Precision Baseline Survey (Surveying and Mapping Publishing House, Beijing, 1981), pp. 140–146. (in Chinese)

    Google Scholar 

  2. J.D. Yuan, Summary of application of stretched wire technology in accelerator alignment and survey. High Power Laser and Particle Beams 32, 045102 (2020). https://doi.org/10.11884/HPLPB202032.190259 (in Chinese)

    Article  Google Scholar 

  3. J.D. Yuan, Y. He, B. Zhang et al., Alignment of beam position monitors in cryomodule of CADS-Injector II. Nucl. Sci. Tech. 28, 75 (2017). https://doi.org/10.1007/s41365-017-0232-9

    Article  Google Scholar 

  4. Q. Ren, Dam Deformation Observation (Hohai University Press, Nanjing, 1989). (in Chinese)

    Google Scholar 

  5. N.F. Zhao, Y.F. Zhao, T.G. Ou et al., Development of a new type of optical-mechanical stretched wire instrument. J. Geodesy Geodyn. 34(2), 180–182 (2014). https://doi.org/10.14075/j.jgg.2014.01.040

    Article  Google Scholar 

  6. G. Galileo, Two New Sciences, Including Centers of Gravity and Forces of Percussion, Translated, with Introduction and Notes, by Stillman Drake (The University of Wisconsin Press, Madison, 1974).

    MATH  Google Scholar 

  7. H.H. Goldstine, A History of the Calculus of Variations from the 17th Through the 19th Century (Springer-Verlag, New York, 1980).

    Book  Google Scholar 

  8. F. Behroozi, P. Mohazzabi, J.P. McCrickard, Remarkable shapes of a catenary under the effect of gravity and surface tension. Am. J. Phys. 62, 1121 (1994). https://doi.org/10.1119/1.17672

    Article  Google Scholar 

  9. X.L. Wang, L. Dong, L. Wu, Analysis and experimental concepts of the vibrating wire alignment technique. Chin. Phys. C. 38(11), 117010 (2014). https://doi.org/10.1088/1674-1137/38/11/117010

    Article  Google Scholar 

  10. C. Zhang, C. Mitsuda, K. Kajimoto. Eigenfrequency Wire Alignment System for Magnet Fiducialization, in Proceedings of the 14th International Workshops on Accelerator Alignment. ESRF, Grenoble, France, 2016. https://inspirehep.net/literature/1722630

  11. W. Wang, Z. Tang, X.Y. He et al., Design and construction of a multi-sensor position monitoring system applied to key components of synchrotron sources. Nucl. Sci. Tech. 27, 134 (2016). https://doi.org/10.1007/s41365-016-0132-4

    Article  Google Scholar 

  12. J.F. Stanton, M.O. Eberhard, P.J. Barr, A weighted-stretched-wire system for monitoring deflections. Eng. Struct. 25, 347–357 (2003). https://doi.org/10.1016/S0141-0296(02)00163-3

    Article  Google Scholar 

  13. A. Temnykh, Y. Levashov, Z. Wolf, A study of undulator magnets characterization using the vibrating wire technique. Nuclear Instrum. Methods Phys. Res. A 622, 650–656 (2010). https://doi.org/10.1016/j.nima.2010.06.362

    Article  Google Scholar 

  14. S. Sudoua, N. Khalatyanb, Y. Kuriharab et al., Measurements and calculations of gravitational and electrostatic wire sags for a 4.6 meter long drift chamber. Nucl. Instrum. Methods A. 383, 391–398 (1996). https://doi.org/10.1016/S0168-9002(96)00818-2

    Article  Google Scholar 

  15. Z.L. Lan, X.F. Yang, W.M. Chen et al., Study on non-contact weighted-stretched-wire system for measuring bridge deflections and its effect factors. Eng. Struct. 30, 2413–2419 (2008). https://doi.org/10.1016/j.engstruct.2008.01.021

    Article  Google Scholar 

  16. K. Wang, Z.Y. Yang, S.Q. Liao et al., Analysis of the influence of metal wire sagging in the pulse tight wire magnetic axis measurement method. Nuclear Techniques 38, 080201 (2015).  https://doi.org/10.11889/j.0253-3219.2015.hjs.38.080201 (in Chinese)

    Article  Google Scholar 

  17. Q. Fu, K. Zhu, Y.R. Lu et al., Detailed study of RF properties of cold models for CW windowtype RFQ. Nucl. Sci. Tech. 29(11), 157 (2018). https://doi.org/10.1007/s41365-018-0489-7

    Article  Google Scholar 

  18. H. Du, Y.J. Yuan, Z.S. Li et al., Beam dynamics, RF measurement, and commissioning of a CW heavy ion IH-DTL. Nucl. Sci. Tech. 29(3), 42 (2018). https://doi.org/10.1007/s41365-018-0373-5

    Article  Google Scholar 

  19. L. Chen, S.H. Zhang, Y.M. Li et al., Room-temperature test system for 162.5 MHz high power couplers. Nucl. Sci. Tech. 30(1), 7 (2019). https://doi.org/10.1007/s41365-018-0531-9

    Article  Google Scholar 

  20. L.P. Sun, Z.Y. Yuan, C. Zhang et al., New thermal optimization scheme of power module in solid-state amplifier. Nucl. Sci. Tech. 30(4), 68 (2019). https://doi.org/10.1007/s41365-019-0585-3

    Article  Google Scholar 

  21. H.H. Goldstine, A History of the Calculus of Variations (Springer-Verlag, New York, 1980).

    MATH  Google Scholar 

  22. J.D. Yuan, B. Zhang, Y.Q. Wan et al., Deformation mechanism of the Cryostat in the CADS Injector II. Cryogenics 89, 113–118 (2018). https://doi.org/10.1016/j.cryogenics.2017.11.010

    Article  Google Scholar 

  23. Q. Chen, Z. Gao, Z.L. Zhu et al., Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application. Nucl. Sci. Tech. 31(3), 29 (2020). https://doi.org/10.1007/s41365-020-0733-9

    Article  Google Scholar 

  24. A. Mareno, L.Q. English, The stability of the catenary shapes for a hanging cable of unspecified length. Eur. J. Phys. 30, 97–108 (2009). https://doi.org/10.1088/0143-0807/30/1/010

    Article  Google Scholar 

  25. G.R. Dean, Precise measurements with a steel tape or wire. Am. Math. Mon. 5, 20 (1913)

    MathSciNet  Google Scholar 

  26. X.C. Lu, G.J. Liu, X.S. Li, Analysis of floating wire system. Hydropower Autom. Dam Monit. 34(2), 38–41 (2010). (in Chinese)

    Google Scholar 

  27. Z.Z. Li, G.J. Liu, Analysis of the system error of the tension line horizontal displacement meter. Hydropower Autom. Dam Monit. 33, 62–64 (2009). https://doi.org/10.3969/j.issn.1671-3893.2009.06.015 (in Chinese)

    Article  Google Scholar 

  28. Y.Z. Gong, W.X. Wang, Research on two-dimensional tension wire and its precision. J. Wuhan Univ Water Conserv. Electr. Power. 29(2), 69–74 (1996). (in Chinese)

    MathSciNet  Google Scholar 

  29. Z.C. Wang, Analysis of related issues in the design of bidirectional stretched wire. Dam Saf. 30(2), 33–39 (1994). (in Chinese)

    Google Scholar 

  30. W.B. Zhu, Y.W. Zhou, Research on the technology of ultra-long stretched wire without float. Hydropower Energy Sci. 25(1), 75–78 (2007). https://doi.org/10.3969/j.issn.1000-7709.2007.01.021 (in Chinese)

    Article  Google Scholar 

  31. T.Z. Tang, Z.C. Li, W.B. Zhao, Analysis of super long tension wire and its precision influence. Water Conserv. Hydropower Technol. 34(7), 79–81 (2003). https://doi.org/10.3969/j.issn.1000-0860.2003.07.027 (in Chinese)

    Article  Google Scholar 

  32. J.B. Zhou, Y.J. Wang, Y.Q. Gong, Development and technical characteristics of non-floating stretched wire. Dam Saf. 5, 28–31 (2016). https://doi.org/10.3969/j.issn.1671-1092.2016.05.008 (in Chinese)

    Article  Google Scholar 

  33. G.J. Liu, Z.Z. Li, X.S. Li, Test analysis of horizontal displacement monitoring device for long pipeline stretched wire. Hydropower Autom. Dam Monit. 36, 53–56 (2012). https://doi.org/10.3969/j.issn.1671-3893.2012.04.016 (in Chinese)

    Article  Google Scholar 

  34. L.Z. Fang, Improvement of the stretched method of building deformation observation. Water Conserv. Hydropower Technol. 45(10), 53–55 (1984). (in Chinese)

    Google Scholar 

  35. Z.R. Ye, W.X. Wang, Y.Z. Gong, Catenary two-dimensional tension wire and three-dimensional inverted hammer wire telemetry system. Dam Obs. Geotech. Test. Z1, 40–45 (1991). (in Chinese)

    Google Scholar 

  36. J.D. Yuan, The alignment technology of ADS-cry module in low temperature. Chin. J. Low-Temp. Phys. 37(2), 161–164 (2015). https://doi.org/10.13380/j.cnki.chin.j.lowtemp.phys.2015.02.015 (in Chinese)

    Article  Google Scholar 

  37. R.W. Warren, Limitations on the use of the pulsed-wire field measuring technique. Nuclear Instrum. Methods Phys. Res. A. 272, 257–263 (1988). https://doi.org/10.1016/0168-9002(88)90233-1

    Article  Google Scholar 

  38. J.G. Lu, J.H. Zhao, Research and application of 500 m unfloating stretched wire. East China Power. 38(8), 1181–1184 (2010). (in Chinese)

    Google Scholar 

  39. A. Temnykh, Vibrating wire field-measuring technique. Nuclear Instrum. Methods Phys. Res. A 399, 185–194 (1997). https://doi.org/10.1016/S0168-9002(97)00972-8

    Article  Google Scholar 

  40. Irvine, H.M., Cable Structures (Dover Publications, New York 1992), pp. 16–20.

  41. Z.Z. Dai, Qualitative analysis of the movement of the tension line caused by universal gravitation. Sichuan Surv. Mapp. 3, 36–38 (1996) (in Chinese)

    Google Scholar 

  42. F. Becker, Définition d’un réseau de référence métrologique pourle positionnement d’un grand accélérateur linéaire. Dissertation, INSA Strasbourg, 4 December 2003. (in French)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jian-Dong Yuan. The first draft of the manuscript was written by Jian-Dong Yuan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-Dong Yuan.

Additional information

This work was supported by Large Research Infrastructures “China initiative Accelerator Driven System” (No. 2017-000052-75-01-000590).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, JD., Wu, JX., Zhang, B. et al. Investigation of factors affecting vertical sag of stretched wire. NUCL SCI TECH 32, 20 (2021). https://doi.org/10.1007/s41365-021-00847-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00847-5

Keywords

Navigation